Opportunities for a transition to soot-free and zero emission heavyduty vehicles and fuels

Francisco Posada (ICCT) Aug 25th, 2021

What is black carbon?

The opportunities for soot-free standards are widespread

Source: Miller, J., and Jin, L. (2018). Global Progress Toward Soot-Free Diesel Vehicles. <u>https://www.theicct.org/publications/global-progress-toward-soot-free-diesel-vehicles-2018</u> *Figure is modified to illustrate effects of China VI adoption. DPF, diesel particulate filter.*

What does it mean in practical terms?

Adopting policies that drive soot-free and zero emission technologies

What are soot-free and zero emission vehicle technologies?

Electric drive engines such as batteryelectric, fuel cell, trolley-electric ...

Euro VI gas engines

Euro VI Diesel engines and 10ppm S diesel

World class policies that drive soot-free and zero emission technologies

Tailpipe emission standards

 Soot-free emission standards (Euro VI, Bharat VI, China VI, EPA 2010)

- Clean, low sulfur fuels
- 10 parts per million (ppm) max sulfur for diesel and gasoline to enable soot-free emission standards

Vehicle electrification policies

 Policies to accelerate electric HDV adoption (Bus electrification mandates, fiscal programs, etc.)

Complementary programs

- Programs that address highemitters, old vehicles, I&M.
- Low Emission Zones

Heavy-duty vehicle emission standards

NOx and PM emission standards for diesel engines used in heavy-duty vehicles

Diesel technology evolution according to emission standards

Aftertreatment emissions control

- Diesel oxidation catalyst (DOC)
 - CO (90%), HC (70%)
 - SOF, a component of PM (10-30%)
- Selective catalytic reduction (SCR)
 - NOx (85-95%)
- Diesel particulate filter (DPF)
 - PM (+98 %)
 - PN (+99 %)
 - CN (+99 %)

Soot free standards like Euro VI require ultra low sulfur diesel (S < 10 ppm)

Stages of Black Carbon Emissions Control Based on European Regulatory Approach for diesel HDVs

Euro VI emission standards are significantly better than Euro V: Virtual PM and BC elimination and best NO_x control

Euro VI

Source: SCANIA

"The difference between Euro V and VI is so remarkable that it can be seen without microscopes or advanced analysis—purely by looking at what comes out of the exhaust."

www.scania.com/group/en/wp-content/uploads/sites/2/2017/09/scania-icct-buses.pdf

HDV emission control costs: around 2-4% of new vehicle

Absolute costs of emission control technology for diesel HDVs

If the country is already is at **Euro IV** the costs are much smaller

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

Latest Euro VI would also provide fuel savings Daimler: 15% fuel consumption reduction

Efficiency as challenge: Fuel consumption reduced by up to -15% within 5 years! Average optimization: More than -1.5% per year Introduction of further fuel efficiency measures in summer 2016 ≈85% 100% 95% 95% 94% Х Х Х up to -5% Ref: S-HH-S¹ 100% up to -5% up to -6% Q4/2011 Q4/2011 Q4/2012 Q4/2016 PPC proven Actros New Actros fuel efficiency measures Euro V Euro VI 2015 / 2016 1) MB Trucks reference test track: Stuttgart-Hamburg Hamburg-Stuttgart, 100% cruise control: 85 km/h

Daimler AG

Do we need CO2 limits for HDV to fulfill European Climate Targets? | An OEM Perspective

For new vehicle emission standards and cleaner fuels, benefits always surpass the costs

Rule	Benefits	Costs	Benefit-Cost Ratio
US LDV Tier 31	\$6.7b-\$19b annually (2030)	\$1.5b annually (2030)	5:1 to 13:1
US LDV Tier 2 ²	\$25.2b	\$5.3b	5:1
US 2010 HDV emissions ³	\$70b annually (2030)	\$4.2b annually (2030)	16:1
California Advanced Clean Cars Program (LEV-III)⁴	\$10.6b cumulative vehicle operating cost savings	\$3.4b cumulative annualized incremental cost	3:1
Mexico HDV NOM-044 ⁵	\$135b (cumulative, 2018-2037)	\$12b (cumulative, 2018–2037)	11:1
Euro 5/V and 6/VI ⁶	\$2,13b (2009 price)	\$1,55b (2009 price)	1.4:1
China 6/VI ⁷	4.4t RMB	1.8t RMB	2.5:1
India Bharat VI ⁸	\$43.8b in 2025; \$107b in 2035	\$14.5b in 2025; \$14.2b in 2035	8:1 in 2035

Vehicle electrification policies for HDVs

Zero emission transport is the final goal. This transition has started with e-buses

Europe (2019) 📕 Electric 📕 Hydrogen 🚽 Hybrid 📗 Diesel 📕 Gas Zero emission % Country Total 78% Denmark 98 102 67% Luxembourg 566 66% Netherlands 635 26% Sweden 654 24% Norway 330 23% Finland 2044 9.2% France 8.6% Belgium 713 1212 8.5% Spain 1799 UK 6.4% 2900 6.3% Germany 990 5.6% Poland 1219 5.4% Italy 3.7% Greece 27 319 1.9% Switzerland 184 Ireland 0% 351 0% Austria 0% 25% 75% 50% 100% % of 2019 registrations

> New urban buses registered in 2019 >8 tonnes Gross Vehicle Weight with ZE% being the sum of electric and hydrogen buses divided by the total. Trolley buses are not included in the electric bus data but make up a small amount of annual new registrations (49 in 2019)

Soluce: https://www.transportenvironment.org/press/denmark-luxembourg-netherlands-lead-wayemissions-free-buses

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

Source: ICCT Databases

Zero emission bus market in Latin-America is growing

~2500 Zero emission buses in total in 2021

Source: https://www.ebusradar.org/en/home-en/

Santiago de Chile: Euro VI and E-bus procurement through regional air quality management strategy

Evolution of urban bus emission control emission control technologies in Santiago Source: S. Galarza, 2020

Buses is the starting point for HDV electrification but there is potential in other segments

and performance confidence

additional applications

early near applications

California's government vision for HDV growth:

- Battery electric transit buses
- Battery electric shuttle and school buses;
- Battery electric delivery vehicles;
- Battery electric garbage trucks;
- Battery electric regional trucks
- Battery electric or fuel-cell long-haul cargo trucks

Source: https://ww2.arb.ca.gov/sites/default/files/2020-11/appd_hd_invest_strat.pdf

Policy actions to accelerate ZEV transition

Phase-out targets: Setting a vision and market signal

Binding regulations: Ensuring model availability and supply

Financial incentives: Making ZEVs cost-effective today

Charging infrastructure: Maximizing ZEVs' convenience

Consumer awareness: Building understanding of ZEVs' benefits

California Zero Emission Vehicle State Targets

CCCT

California Zero Emission Bus Mandate

Calendar year	Zero Emission Bus percentage of new bus purchases		
	Large transit agency	Small transit agency	
2023*	25%		
2024*	25%		
2025	25%		
2026	50%	25%	
2027	50%	25%	
2028	50%	25%	
2029 and after	100%	100%	

* Potential waiver for early action (more than 1000 ZEBs by December 2020; 1150 by December 2021)

Diesel sulfur content, heavy-duty engine emissions standards, and ZEV policy in Latin America

Data from:

https://theicct.org/sites/default/files/publications/Global_progress_soutfree_diesel_2019_20190920.pdf

Thank you! francisco@theicct.org

