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Executive Summary 

ICCT has identified a need to determine the characteristics of instantaneous fuel economy 
(miles per gallon) tendencies of vehicles in today’s U.S. fleet of light-duty vehicles. While 
several organizations agreed that a fuel economy study is important, they had questions and 
concerns about how a fuel economy project could be performed by collecting data using long-
term instrumentation of private vehicles using OBD dataloggers. ICCT recognized that before a 
major nationwide instrumentation study of fuel economy characteristics could be undertaken, 
information addressing these concerns needed to be developed and evaluated. ICCT asked 
Eastern Research Group to conduct a pilot study to identify areas of concern and possible 
alternative solutions in four areas: vehicle sample structure and size, vehicle recruitment 
methodology, datalogger evaluations, and estimated project cost. This report is the result of that 
pilot study investigation. 

Reasons for studying second-by-second fuel economy – As fossil fuel resources 
become scarcer and the demand for products derived from fossil fuels increases, pressure 
increases to develop new ways of improving vehicle fuel economy. Vehicle and engine 
manufacturers are continuously searching for new technologies that would produce higher fuel 
economy. Recent developments of gasoline/electric hybrid propulsion systems, gasoline direct 
injection fuel metering, and automatic transmissions with more than four gears are results of 
those efforts. To further improve the average fuel economy of the U.S. fleet, information about 
real-world driving behavior, the distribution of vehicle operating environments, and the influence 
of those factors on fuel economy would be a valuable resource for identifying the conditions 
under which today’s technologies produce low fuel economies and high fuel economies. 
Information on real-world effectiveness of different technologies would be another potential 
valuable resource. To identify these conditions, measurements of second-by-second fuel 
economy rather than simply average fuel economy is required.  

An additional reason for studying fuel economy is that vehicle emission rates are closely 
related to fuel consumption rate. The emission rates of most pollutants, including CO2, a 
greenhouse gas, tend to be proportional to fuel consumption rate. Therefore, in general, vehicles 
or operating conditions that have high fuel consumption rates will also have high emission rates. 
As a result, the factors that affect fuel economy will also affect emissions. 

Goal of the main study – ICCT would like to facilitate a nationwide study to investigate 
the fuel economy of light-duty vehicles. In this document, that national study will be called the 
main study. The goal of the main study would be to create a database of second-by-second fuel 
economies versus operating conditions for a sample set of vehicles. This dataset could be used in 
at a variety of ways. For example, it could be analyzed to determine how the fuel economies of 
current vehicles are influenced by different vehicle technologies as the vehicles are actually used. 
Another goal would be to determine the distribution of fuel economy influencing factors across 
the U.S. to help determine where technologies could further improve fuel economy and further 
reduce U.S. light-duty fleet emissions. 

Main study project approach – While the objective of the main study is to investigate 
second-by-second fuel economy, from a technical perspective this really involves measuring fuel 
rate (mL/s) on a second-by-second basis, since fuel rate divided by speed (miles/hour) equals 
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fuel economy (miles per gallon). Dynamometer testing, which is used to characterize average 
fuel economy of new vehicles, is not in-use testing and is of necessity a test of short duration and 
a single driving cycle. If in-use vehicles are instrumented using portable emissions measurement 
systems (PEMS), instantaneous fuel rates can be determined. However, obtaining PEMS data for 
a long duration is expensive, even for a single vehicle. A more feasible alternative is to use the 
OBD data stream for the newest light-duty vehicles in the fleet (approximately 1996 and newer 
vehicles) to gather information from which fuel rate measurements are reported or from which 
fuel rate could be calculated or estimated. For the main study, this alternative would involve 
obtaining OBD data for a one year period so that a complete dataset for each vehicle under 
operating conditions and trip behavior representative of all seasons would be obtained. 

Pilot Project questions – As a result of the main study approach described above, the 
pilot project was undertaken to answer a number of questions about a potential main study, 
including:  

 Would such a main study be possible? What are the hurdles? 

 Does the OBD data stream provide information that could be used to measure or 
estimate fuel rate and vehicle speed and thus calculate fuel economy? 

 Which vehicle/engine technologies provide better information than others? 

 What accuracies for fuel rate could be expected? 

 What factors are expected to affect fuel economy and what are alternative 
methods for measuring these factors? 

 What are some options for logging, retrieving, and storing the OBD data stream 
information? 

 What are some alternatives for the structure and size of a vehicle sample to be 
instrumented with OBD dataloggers? 

 What are the options for identifying and recruiting potential participants? 

 What are the estimated costs associated with recruiting vehicles, the datalogger, 
the cost of data transmission and other main cost sources? 

 
Vehicle Sample: Structure and Size 

A set of vehicles that is a subset of the U.S. fleet needs to be selected and instrumented to 
provide data for the main study. The vehicle sample needs to represent the range of vehicle 
technologies, operating environments, and driver attributes of the U.S. fleet. That objective could 
be accomplished with a randomly selected sample. However, such a sample would have a small 
number of vehicles for the less common technologies, environments, and driver attributes. For 
example, a random sample would have only about 1% diesel vehicles, about 2% hybrid vehicles, 
about 5% of vehicles home-based at altitudes greater than 5,000 feet, and a low percentage of 
newer technologies such as turbocharging, gasoline direct-injection, and transmissions with six 
or more gear ratios.  
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Another possible method to create the vehicle sample is to use a stratified, random 
approach. With this approach, certain strata of the U.S. fleet would be sampled at a higher or 
lower rate to increase or decrease the fraction of vehicles in the sample in those categories. The 
advantage of this approach is that a larger amount of data would be obtained for the less common 
strata so that a sufficient amount of information would be obtained from the instrumentation to 
provide a more reliable analysis of the trends for those strata. We recommend the stratified, 
random approach and proceed with the discussion with that approach in mind.  

Design variables – The sample would be designed around a set of variables that are 
known or could possibly affect the fuel economy of vehicles. These variables fall into two 
categories. The time-dependent variables, which generally change from second to second, 
include the vehicle’s operating environment and descriptors of the vehicle’s internal operation as 
it responds to the operating environment and the driver. Operating environment includes road 
grade, altitude, and weather. Internal vehicle operation variables include vehicle speed, engine 
RPM, and A/C compressor status. Time-independent variables include vehicle technology, driver 
characteristics, general operating environment, and the individual vehicle. Driver characteristics 
include driver age, gender, socioeconomics, and aggressiveness. General operating environment 
variables include home-base altitude, home-base terrain (hilly vs. flat), and home-base climatic 
weather. Vehicle technologies include engine metering type (port fuel-injection, gasoline direct-
injection, gasoline hybrid, port fuel-injection) and number of transmission gears. Individual 
vehicle characteristics include model year, make, model, and engine displacement. 

Sample design approach – The vehicles for the sample can be selected only on variables 
that are known in advance for candidate vehicles. Because of this, vehicles cannot be selected 
based on time-dependent variables. The values of time-dependent variables for individual 
vehicles will be known only after the instrumentation data is obtained. Therefore, vehicles can be 
selected for the sample based only on vehicle technology, individual vehicle information, general 
operating environment, and driver characteristics. The time-independent variables can be split 
into two types for the purposes of designing and selecting the vehicle sample. The first is 
stratification variables. Stratification variables are the major variables that we want to investigate 
with the sample. Vehicles within each of the strata of these variables would be selected 
randomly. The second set of variables used to design the sample contains fleet representation 
variables. These are variables that are different from the stratification variables and are used to 
ensure that the vehicle sample is representative of the U.S. fleet. 

A description of one possible sample structure – For this scenario, vehicles could be 
sampled from across the United States using three stratifying variables: 

 Propulsion System. Propulsion system would be sampled with increased shares 
for diesel, gasoline direct-injection and hybrid technologies and reduced shares of 
port fuel-injection technology. 

 Fuel economy and environment label (FEEL) Highway MPG values. The 
sample would be stratified with respect to this variable with enhanced fractions of 
low FEEL Highway MPG values and high FEEL Highway MPG values and 
suppressed fractions of moderate values. The FEEL Highway MPG values may be 
the best indicator of the general fuel economy tendency of the vehicle that can be 
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known in advance of vehicle selection. These values can be obtained for most 
year, make, and model vehicles from tables at fueleconomy.gov.  

 The ratio of FEEL City MPG to FEEL Highway MPG. This ratio is a measure 
of the overall efficiency of the vehicle relative to the general tendency measured 
by the FEEL Highway MPG value. For example, vehicles will tend to have a low 
ratio if the vehicles are heavy compared to the power of their engines. Vehicles 
might be selected to have approximately equal numbers of vehicles in low, 
medium and high ratio categories. 

 
Vehicles would be randomly selected within each combination of the three stratifying 

variables. However, the entire dataset would be subject to the constraint that the sample as a 
whole is approximately proportionately representative of the U.S. fleet in terms of 11 fleet 
characteristic variables: vehicle age, vehicle type, transmission type, manufacturer, total 
accumulated miles, driver age, driver socioeconomics, driver gender, altitude of base location, 
climatic precipitation, and climatic ambient temperature. As described in the body of this 
document, these 11 quantities can be determined or estimated for the U.S. fleet and for candidate 
vehicles for the sample.  

Sample size – The size of the vehicle sample will affect the cost of the main study. In 
general, the sample should be large enough to provide the amount of data that is needed to 
answer the study questions. An estimate of the sample size needs to include consideration of 
what the resulting dataset will be used for and how it might be analyzed. Over a one year period, 
each instrumented vehicle would produce from one million to two million one-second 
observations on fuel economy, vehicle operation, and operating environment. Such a large set of 
data should be adequate to describe how the fuel economy of each vehicle depends on the 
variables of interest in the study. The analysis for each vehicle would determine how fuel 
economy depends on the speed, road grade, ambient temperature, wind, A/C compressor status, 
transmission gear, engine RPM, and so on. However, the dependence of fuel economy on each 
parameter will be different among the different individual vehicles in the sample because of the 
different designs used for vehicles and powertrains. Thus, across the vehicles in the sample, the 
coefficients that describe the dependences of individual fuel economies on the various factors 
will not converge to a single value for each factor but will make up of a distribution of values 
with one value for each vehicle in the sample. Consequently, larger sample sizes will better 
define the distribution of coefficients for each different factor under investigation in the analysis. 
Larger sample sizes will also provide more statistical assurance that driving behavior is 
representative of the fleet as a whole. 

A measure of the distribution of coefficients for a fuel economy influencing factor, for 
example road grade, is the standard deviation of the distribution. The analysis in the report 
indicates that the standard deviation of arbitrary distributions of values of fuel economy 
influencing coefficients can be known with an uncertainty of about 11% with a 200 vehicle 
sample or with an uncertainty of about 8% with a 400 vehicle sample. Based on the analysis, 
we recommend that a sample no smaller than 200 vehicles should be used for the main study. 
Increasing the sample size beyond 200 vehicles will reduce the uncertainty in the distribution of 
the coefficients of fuel economy influencing factors, but substantially larger samples sizes are 
required to reduce the uncertainty just marginally. Modifying the number of stratification 
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variables and/or the number of levels within each stratification variable would require changes in 
the sample size. 

Participant Recruitment 

The recruitment methodology for the main study needs to be developed to select a 
representative sample of the U.S. fleet that covers a range of vehicle technologies, operating 
environments, and driver behaviors. The report discusses the important components of vehicle 
recruiting – not to present a final methodology since many methodologies could be developed – 
but to discuss the different areas that any recruiting methodology would need to consider.  

Source of participant candidates – Any vehicle sample that would be instrumented in 
the main study would need to address randomness and national coverage. Some aspect of 
randomness needs to be present in the selection of individual vehicles, and this could mean that 
vehicles are either selected randomly or that stratified random sampling could be used. National 
coverage is important so that the vehicles that are instrumented would be driven in different 
types of weather, on different types of terrain, and in both rural and urban areas. It is also needed 
to capture regional variances in driving behavior. 

This study considered four alternative sources of participant candidates. The first source 
would be to conduct a household survey by telephone and online interviews to develop a pool of 
households and vehicles from which the vehicle sample would be collected. The second source 
considered was the panelists that certain companies such as Knowledge Network maintain to 
perform surveys. The panelists are carefully selected by these companies to be representative of 
the U.S. population. The third type of source for the participant pool would be from respondents 
of a separate on-going national household travel survey. Government and non-government 
organizations conduct such surveys to determine the travel habits of the U.S. population. The 
main study could tie into one of these on-going surveys to develop a participant pool. The fourth 
source is to use state vehicle registration databases to identify candidate vehicles. This approach 
would require that privacy concerns be worked out with at least several individual states.  

Our analysis indicates that overall, the on-going household travel survey approach may 
be the most attractive. The organization sponsoring the household travel survey would already be 
interested in travel and, therefore, would likely also be interested in fuel economy trends. The 
data needs for creating the candidate pool of vehicles could be obtained by adding a few 
questions at the end of the household travel survey questionnaire and the groundwork would 
already have been provided by the survey operator. This source may be the least expensive of the 
four alternatives considered. Some of the information needed by the main study may already be 
requested by the survey operator. We could also expect a high willing-to-participate rate since 
the survey respondents who stay with the survey to the end of the questionnaire will likely be 
those who are most interested in participating in a fuel economy instrumentation study. The only 
downsides we see in using a household travel survey as a source of participants is that the survey 
sponsor has control over the time schedule for the survey and of ensuring an unbiased sample.  

Description of recruitment methodology – The recruitment section of this report 
describes the process involved in selecting participants in the instrumentation study and 
maintaining their participation for the instrumentation phase. First, the national household survey 
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respondents would be asked if they would be willing to participate in a fuel economy 
instrumentation study and initial information about their vehicles and demographics would be 
obtained. An analysis of the candidates would be performed to compare with the vehicle sample 
structure and size described previously. Certain households and vehicles would be targeted using 
online and telephone recruitment to form a participant pool. The recruitment would collect 
additional information about vehicle base location and driver demographics. The instrumented 
sample would then be selected from the participant pool. Dataloggers would be sent or otherwise 
installed on the participating vehicles and the relationship between the study participants and the 
main study project team would be maintained for the one-year instrumentation period to ensure 
that quality data is obtained from the targeted number of vehicles in the main study. 

Tools for recruitment and participant maintenance – A variety of tools would be used 
to recruit and maintain the instrumented vehicle sample during the presumed one-year data 
collection period. These tools would include an incentive package, a project website, an 
advanced notification package, telephone recruitment tools, datalogger assistance, and 
participant management tools. 

Since the study would continue over an extended period of time, incentives should 
regularly be provided to study participants to encourage their continued participation. We know 
from experience that in long-term studies such as the main study, offering staggered incentives 
for completing certain tasks or assignments on a predetermined schedule also works well to 
retain participants. This report discusses five incentive package ideas: monetary, gift cards, 
games on the study website, free American Automobile Association membership, and a vehicle 
data report.  

An advanced notification package would be sent to participation candidates who have 
been selected for participation to gain their cooperation. The package for the main study would 
include, for example, an introductory letter, a study brochure, instructions and passwords for 
participating in the online recruitment interview, or alternatively for participation in a telephone 
interview. The materials would describe who is conducting the main study and why, the 
incentives that are being offered to participants, what the participant would be required to do.  

A project website would be set up to maintain the main study’s communications between 
the main study project team and survey participants. The project website would include study 
information for the participants, FAQs about the study, how the participants can contact the 
project team, information for the public.  

Because only about 20% of households that receive the advanced notification package 
typically complete online recruitment, the remaining 80% of targeted households would need to 
be recruited by telephone calls. Telephone interviewers can use the online recruitment tool to 
recruit targeted households during the telephone interviews. A series of “hot buttons” would be 
available to the interviewer to guide the interview through the recruitment web page to ensure 
complete collection of all critical data elements. 

We anticipate that OBD dataloggers will be sent to recruitment households to be installed 
by the owner on the recruited vehicle. Ideally, the datalogger will be designed so that most 
vehicle owners can perform the installation themselves. However, in some cases, data owners 
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may require assistance. In these cases, local vendors would be needed to install the dataloggers 
for the owners. 

Several different project management tools will be needed to maintain participation of the 
vehicles in the study. At least four contacts with participants should be made during the study but 
they should be short and simple and may be administered by mail with web and telephone 
options according to the participant's preference. The responses would be tracked so that a lack 
of online or mail response would result in a telephone contact. The challenge of recruiting and 
retaining participants involves not only motivating them to participate, but also not “over 
educating” them on the transportation issues which can inappropriately bias responses. After a 
candidate initially accepts participation in the study, a principle problem of panel research is 
attrition. The recommended design would be structured to minimize that attrition by several 
activities. 

Validation of vehicle recruitment methodology – Recruitment methodology validation 
would be performed early in the main study using two different activities. The first is cognitive 
testing which occurs on the draft recruitment materials using a small group of people to evaluate 
the understanding of those materials. The second is a shake-down process that would occur 
during the beginning of main study as initial candidates are slowly recruited for the study. 
During the shake-down period, the recruiting methodology can be evaluated and modified based 
on the initial findings of actual participant candidates and participants.  

Datalogger Evaluations 

One objective of this pilot study was to procure or develop a datalogging system to 
collect and record OBDII engine and vehicle operating data that could be used to calculate in-use 
second-by-second fuel rate estimates under all operating conditions, for up to one year in 
duration. A small, unobtrusive system was sought for this study that could be used on 1996 and 
newer light-duty gasoline, diesel, and hybrid vehicles, could be installed by the study participants 
themselves, and would automatically initiate recording and sleep modes. Collection of SAE 
J1979 parameters (standard PIDs) and some manufacturer-specific parameters (enhanced PIDs, 
for data such as hybrid battery state of charge, air conditioning compressor status, and vehicle 
fuel rate, as available) was required. Dataloggers were evaluated that could either store all the 
data on the datalogger or broadcast the data (via a cellular modem) to an internet-based server. 

The method to read or measure fuel consumption rates through the OBD port varies by 
vehicle make, model, and engine. Many gasoline-powered vehicles directly report the mass of air 
entering the engine as measured by the engine’s mass air flow sensor (this data is broadcast as a 
standard PID). For these vehicles, the reported mass of air provided to the engine can be used in 
the gasoline combustion equation to calculate the amount of fuel required for stoichiometric 
engine operation. Fuel rates during non-stoichiometric operation may be calculated using the 
ratio of actual air provided to an engine to the theoretical air required for stoichiometric 
combustion (this ratio is sometimes referred to as lambda), which is reported as a standard PID 
for vehicles with wide-band oxygen sensors. However, there are a number of situations for which 
the above approach cannot be used. These include: 

 Operation of vehicles that do not broadcast mass air flow and/or lambda, 
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 Operation of diesel vehicles, which employ different air / fuel management 
strategies and which do not operate stoichiometrically, and  

 Vehicle operation during open loop fuel control (i.e., cold start, fuel cut-off, or 
power enrichment mode), if lambda is not broadcast during these non-
stoichiometric periods.  

 
For these situations, different methods for calculating the instantaneous fuel rate using 

additional standard PIDs (such as manifold absolute pressure, commanded equivalence ratio, 
narrow-band oxygen sensor voltage, engine speed, calculated load, long-term or short-term fuel 
trims, or other PIDs) might be required, or collection of enhanced PIDs (such as engine fuel rate, 
injector fuel rate, or injector duration) might be required. In addition, some late model vehicles 
broadcast engine fuel rate as a standard PID, which may be used when available. Details of the 
recommended measurement strategies based on the type of vehicle and operation is provided in 
the study report. 

Datalogger research and selection – ERG performed market research to identify one or 
more dataloggers that most closely met the requirements specified by ICCT for this project. 
Information was gathered on products offered by more than 40 companies to identify candidate 
loggers for this project, and of those, a more comprehensive review was given to eleven of those 
candidates. Each of the eleven candidates was ranked based on suitability for use in the main 
study, limitations of use in the main study, and price range. Based on this review, two units were 
selected for in-use testing during this pilot study: the HEM Data DAWN Mini and the LiveDrive 
i2d.  

Both units were acquired and tested to assess suitability for use in the main study. 
However, ERG was unable to thoroughly evaluate the LiveDrive i2d unit, as it was undergoing 
development during the evaluation period, and some forthcoming features were not functional on 
our unit during the period of evaluation. In particular, the i2d datalogging system did not provide 
instantaneous fuel rate estimates, nor did it allow the user to modify which standard PIDs would 
be recorded by the datalogger, so ERG was unable to configure the i2d logger to collect all the 
standard OBD data that would be needed to calculate instantaneous fuel rate estimates. 
Consequently, the HEM Data DAWN Mini datalogger was used for the fuel rate validation 
testing performed for this study. 

Datalogger Costs – A wide price range was seen between the HEM Data DAWN and 
LiveDrive i2d loggers. Although the HEM Data costs were largely dependent on which features 
were selected for DAWN logger, ERG’s loaded cost for the HEM Data DAWN logger was 
approximately1 $1200 vs. approximately $200 for the LiveDrive i2d logger, both with GPS and 
cellular capability. 

                                                 
1 The per-unit price of the HEM Data DAWN logger depends greatly on the options desired and the quantity 
ordered. 
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Validation of Fuel Rates Obtained by Dataloggers 

After datalogger selections were made, the dataloggers were evaluated using comparisons 
of second-by-second fuel rates obtained in three datasets: 

1.  Standard OBD PIDs2 vs. PEMS – A cursory comparison of fuel rates on 19 
vehicles,  

2. Standard OBD PIDs vs. Enhanced OBD PIDs3 – A comparison of fuel rates on 
one MAF/wide-band O2 sensor vehicle and one hybrid vehicle, 

3. Standard OBD PIDs vs. Dynamometer-Measured Fuel Rates – A comparison 
of fuel rates on one GDI/narrow-band O2 sensor vehicle. 

Validation using Kansas City PEMS Data – Second-by-second fuel rate results from 
portable emissions measurement system (PEMS) data from the U.S. EPA's Kansas City Light-
Duty Vehicle Study were compared with fuel rate estimates from standard OBDII PID data 
(standard SAE J1979 MAF / fuel trim) from the same study.  

The second-by-second data was obtained from dynamometer testing over the LA92 test 
cycle and from on-road PEMS testing. The PEMS unit calculated fuel rate from measured 
exhaust mass flow and exhaust concentrations and simultaneously collected selected standard 
OBDII parameters including mass airflow, engine RPM, throttle position, engine coolant 
temperature, air intake temperature, and bank one fuel trim data. The Kansas City PEMS units 
did not collect oxygen sensor or lambda sensor data, which limits our ability to adjust OBDII 
based fuel economy estimates for non-stoichiometric operation.  

For the 19 selected vehicles for this analysis, 85,000 seconds of operation when the 
engine was on and the OBD and PEMS units were collecting data were obtained. We calculated 
the stoichiometric fuel rate using the OBD-reported mass air flow, an assumed specific gravity 

                                                 
2 An OBDII PID is a second generation on-board diagnostic parameter identification, which is commonly 
abbreviated as PID. This is a code that is used by a scan tool or datalogger to request specific information from a 
vehicle. SAE J1962 describes the OBDII-compliant hardware.  SAE J1979 defines the “standard” PIDs that may be 
broadcast by a vehicle and how to translate and calculate the responses to those PID requests.  Although all 1996 
and newer light-duty (<8500 lbs) vehicles and some newer medium duty vehicles and heavy-duty vehicles are 
required to be OBDII compliant (they are required to have SAE J1962-compliant hardware and be SAE J1979 
compliant), not all SAE J1979 PIDs are required to be broadcast by a vehicle (vehicle manufacturers may choose 
which subset of PIDs to broadcast based on the vehicle's powertrain technology). The subset of standard PIDs 
broadcast by a manufacturer can be decoded / calculated using information provided in SAE J1979.   
 
3 Vehicle manufacturers can, and do, provide additional operational and diagnostic information data that is specific 
to each manufacturer. The information needed for a scan tool or datalogger to request, decode, and translate these 
“enhanced parameter IDs, ” or “enhanced PIDs, ” is manufacturer-specific and is not provided in SAE 
specifications.  The information needed to collect and translate enhanced PIDs must be obtained from vehicle 
manufacturers, although some manufacturers may provide information through a central source such as the 
Equipment and Tool Institute. The enhanced PIDs available by manufacturer vary. Some enhanced PIDs of interest 
in this study include hybrid vehicle battery state of charge, air conditioning compressor status, and some indicator of 
fuel rate (e.g., fuel injection timing / duration, fuel injected mass / volume per cylinder rotation, or perhaps some 
form of calculated fuel rate). 
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for the fuel, and an assumed stoichiometric air-fuel ratio. The PEMS unit reported fuel rate based 
on measured emissions concentrations and measured exhaust mass flow rate. The OBD data and 
the PEMS data were time aligned based on the calculated fuel rates. However, no effort was 
made to account for any diffusion effect that might influence the PEMS fuel rate time series.  

Analysis of the calculated fuel rates showed that, in general, the OBD fuel rate was 
directly proportional to the measured PEMS fuel rate. However, many individual one-second 
values deviated from the general trend. An analysis of engine operating conditions that may have 
been non-stoichiometric could not explain these deviations.  

Comparison of standard versus enhanced PID fuel rate estimates – Second-by-
second fuel rate estimates calculated from standard PIDs were compared with fuel rate estimates 
calculated using an enhanced PID (OEM fuel injector fuel rate) data from the same test. This 
comparison was made for two vehicles, a 2012 Toyota Camry and a 2011 Toyota Prius, both 
with 4-cylinder engines equipped with mass air flow sensors and wide-band oxygen sensors. For 
each data set, mass air flow and lambda were the standard PIDs used to estimate fuel rate, while 
injector fuel rate was the enhanced PID used for the engine’s fuel rate estimate. The injector fuel 
rate was converted to engine fuel rate using the engine speed, accounting for a 4-cylinder, 4-
stroke engine, and performing unit conversions as needed.  

For the Camry, the cumulative mass air flow-based fuel rate was approximately 13 % 
lower than the injector-based value, while the Prius’ mass-air-flow-based fuel rate was 
approximately 3 % lower than the injector-based value. For both the Camry and the Prius, the 
instantaneous differences between the two fuel rates were much greater than the cumulative 
differences, primarily because the deviations tended to occur at low fuel rate transients that did 
not contribute significantly to the overall cumulative fuel usage but where the relative 
(percentage) differences tended to be quite large. For the Camry, the average of the percent 
differences between the mass air flow-based fuel rate and the injector fuel rate was 151%, and 
for the Prius, this average of percent differences was 22%. The coefficient of determination 
between the Camry’s mass air flow-based fuel rate and the injector fuel rate was r2=0.81, and for 
the Prius it was r2=0.98. 

For the Camry, most of the discrepancies (nearly 80%) occurred at times when the 
vehicle was coasting or slowing, and during these times the injector fuel rate remained 
significantly higher than the MAF fuel rate.4 A review of the data suggests the MAF/lambda-
based fuel rate was reasonable, while the injector-based fuel rate appeared incorrect during these 
discrepancies. The specific reason for this discrepancy was not identified, although it appears the 
vehicle may have been under deceleration-based fuel cut during these times. For the Prius, both 
the mass air flow and injector-based fuel rates appeared reasonable throughout operation, and 
most of the differences between these two rates appeared to be a result of comparing two 
different and rapidly-changing signals with different rise and fall rates over quickly-fluctuating 
transients.  

                                                 
4 This is an important finding since it suggests that fuel rates based on OBD information may not always be 
accurate. Before a main study is undertaken, a prudent next step would be to compare fuel rates calculated from 
OBD information against dyno-measured fuel rates for a variety of vehicles and technologies to determine the extent 
and vehicle/engine operating conditions of fuel rate disagreements. 
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Validation using Dynamometer – One set of data was collected to compare fuel rate 
calculated from OBD-generated information with measured fuel rate from dynamometer 
measurements. A 2009 Saturn Outlook with gasoline direct-injection, mass air flow fuel 
metering, and a narrow-band oxygen sensor was tested on a chassis dynamometer while driving 
the HFET, US06, and FTP75 test cycles at 70F ambient temperature. The dynamometer 
instrumentation measured exhaust flow rate and emissions concentrations from which mass fuel 
rate was calculated by carbon balance. During the testing, the HEM Data logger collected 
second-by-second standard PID OBD parameters.  

The dynamometer and OBD datasets were time aligned using the dynamometer and OBD 
speed values. Dynamometer volumetric fuel rate was calculated from dynamometer mass fuel 
rate and fuel density. OBD volumetric fuel rate was calculated from the reported OBD mass 
airflow, the stoichiometric air/fuel ratio, and the fuel density. 

After final time alignment, examination of the data revealed three trends in the 
dynamometer and OBD fuel rate time series: 

1. In general, the shape of the dynamometer and OBD fuel rate time series agreed. 
However, the OBD time series had more high frequency fuel consumption 
variation than the dynamometer-measured fuel rate time series. That is, the 
dynamometer fuel rate time series appeared to be smooth in comparison with the 
OBD fuel rate time series. 

2. Fuel cutoff events, which occurred during long decelerations, were indicated by 
the OBD commanded equivalence ratio PID with values just below 2.0. The 
dynamometer-measured fuel rate during fuel cutoffs exhibited exponential decays 
rather than flat bottom wells.  

3. The one cold start, which occurred at the beginning of Bag 1 of the FTP75 cycle 
at an ambient temperature of about 70F, was indicated by the OBD commanded 
equivalence ratio PID with values near 1.025.  

A neural network model was used to confirm that the OBD mass air flow PID and the 
OBD commanded equivalence ratio PID contained sufficient information to predict the 
dynamometer measured fuel rate during stoichiometric operation, the six fuel cutoff events, and 
the one cold start. The model predicted the dyne-measured fuel rate with an r2 of 0.993 and a 
standard deviation of 0.12 mL/s, which is 2% of the maximum observed fuel rate for the vehicle 
and 25% of the observed fuel rate at idle. 

While the OBD commanded equivalence ratio PID was able to indicate when the cold 
start occurred, the value of that variable (1.025) during the 70F cold start did not reflect the 
observed actual lambda, which was about 1.4. This suggests that at least for this vehicle, which 
had a narrow-band oxygen sensor, the standard OBD PIDs were able to predict the fuel rate 
during stoichiometric operation and fuel cut offs but were able to only indicate when enrichment 
or enleanment events occurred but not the value of lambda. This suggests that narrow-band 
oxygen sensors may not be adequate to calculate fuel consumption when enrichment occurs 
during cold starts and high load operation.  
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Conclusions 

Overall, the pilot study indicates that a main study, which would be made up of 
preparation, collection, and processing sub-studies, could be performed with the goal of 
collecting one year of 1 Hz data on fuel economy and the factors that influence fuel economy for 
a moderately-sized sample of the U.S. light-duty fleet. The analysis indicates that, at this time, a 
full-blown effort to acquire accurate fuel economy data on any 1996 and newer vehicle of any 
technology would be an expensive undertaking. The tables below show that the estimated cost to 
acquire one year of second-by-second data is from about $3,700 to $7,200 per vehicle for a 200-
vehicle sample and is from about $2,600 to $5,000 per vehicle for an 800-vehicle sample, plus 
pre- and post-processing costs of about $1,300 per vehicle for a 200-vehicle sample and $400 per 
vehicle for an 800-vehicle sample. 

Estimated Project Costs for 200- and 800-Vehicle Scenarios 

 
Task Detail 

200 Vehicles 800 vehicles 
Low High Low High 

P
re

p
ar

e Preparation 
for Main 

Study 

Sample/Recruitment Design 44,000 44,000 44,000 44,000

Datalogger Design 79,000 79,000 79,000 79,000

Total 123,000 123,000 123,000 123,000
  Preparation Total 123,000 123,000 123,000 123,000

C
ol

le
ct

 

Recruitment  
and  

Sampling 

Fleet characterization and 
filtering 84,000 84,000 192,000 192,000
Participant interaction and 
management 26,000 26,000 84,000 84,000

Sources of drivers/vehicles 11,000 253,000 44,000 495,000
Total 121,000 363,000 320,000 771,000

Data  
Collection 

Tailoring for each vehicle 40,000 40,000 160,000 160,000
Datalogger logistics + 
maintenance 172,000 266,000 687,000 826,000

Data management 0 38,000 0 154,000

Incentives 37,000 154,000 147,000 617,000
Total 249,000 498,000 994,000 1,757,000

Datalogger 

Datalogger basic hardware 234,000 234,000 607,000 607,000

Cellular data + hardware 0 201,000 0 767,000

Enhanced PID costs 134,000 134,000 134,000 134,000
Total 368,000 569,000 741,000 1,508,000

  Data Collection Total 738,000 1,430,000 2,055,000 4,036,000

P
ro

ce
ss

 

Data  
Processing 

Acquire/Link associated data 31,000 31,000 31,000 31,000

Presentation of data 83,000 83,000 123,000 123,000

Data archiving 5,000 24,000 5,000 24,000
Total 119,000 138,000 159,000 178,000

 Data Processing Total 119,000 138,000 159,000 178,000
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The areas of sample design and vehicle recruitment appear to have no technical 

challenges that cannot be met. Costs for these areas are substantial; however, opportunities 
probably exist for cost reductions through collaboration and cost-sharing with organizations that 
have related interests in transportation, vehicle usage, vehicle maintenance, and emissions. This 
leaves primarily three areas where challenges remain: OBD dataloggers, OBD data issues, and 
fuel rate calculated from OBD data. 

Although it is moderately straightforward to obtain OBD-based average fuel rate 
estimates for a large number of on-road light-duty vehicles, it can be significantly more 
challenging (and costly) to obtain moderately accurate instantaneous (second-by-second) 
estimates, due to large variations in instantaneous fuel rates and the challenges of quantifying 
fuel rates during periods of non-stoichiometric operation for vehicles that do not have wide-band 
sensors that directly output lambda.  

Additional work on calculating accurate fuel rates is needed before undertaking a study 
that includes vehicles with narrow-band oxygen sensors. Even for vehicles with wide-band 
sensors, instantaneous fuel rate estimates can be inaccurate if wide-band lambda is not reported 
during open-loop operation (such as during cold starts, fuel cut, or enrichment operation).  

Similarly, mass air flow signals are available for the majority of 1996 and newer light-
duty gasoline-powered on-road vehicles in the U.S. A study focused on these vehicles will be 
more affordable and likely have more accurate results than a study that includes all 1996 and 
newer light-duty vehicles, including those that do not broadcast a mass air flow signal and non-
stoichiometric vehicles such as diesels. However, diesel vehicles and vehicles that do not 
broadcast a mass air flow signal likely comprise 25% to 50% of the 1996 and newer on-road 
fleet in the U.S., so a significant portion of the fleet is excluded by excluding these vehicles. 
Ultimately, the intended goals of the study will guide the decisions about whether instantaneous 
fuel rate results and the level of fleet penetration – in terms of both the vehicle types that can be 
instrumented and the amount of enhanced PID data collected – justify the costs. 

Because of the diversity of vehicle technologies, only a subset of standard PIDs is 
broadcast for any individual vehicle, and this list of PIDs differs from vehicle to vehicle. 
Although it may be possible to have a “generic” PID-request configuration for all dataloggers to 
be used in the study, knowing which PIDs are broadcast for any specific vehicle prior to 
beginning a main study would be beneficial in optimizing vehicle-specific datalogger 
configurations. This will help ensure the optimal data is collected for each vehicle and minimize 
the possibility of reduced sampling rates resulting from oversampling, that is, requesting more 
PIDs than can be collected on a 1 Hz basis.  

The collection of some enhanced PIDs, such as hybrid battery state of charge and air 
conditioning compressor status, will be necessary to achieve some potential main study 
objectives. Enhanced PIDs directly reporting fuel rate would also be necessary in order to 
include diesels and gasoline vehicles without mass airflow or air/fuel outputs. Because of the 
vast differences in types and availability of enhanced PIDs among vehicle manufacturers, costs 
and feasibility for acquiring enhanced PIDs varies greatly from manufacturer to manufacturer. 
So, although it is reasonable to expect that enhanced PIDs such as hybrid battery state of charge, 
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air conditioning compressor status, and some indicator of fuel rate will be available for some 
vehicles, enhanced data will not likely be available for all vehicles instrumented in the study. 
The available budget, schedule requirements and type of datalogging system used will determine 
the level of enhanced PID data collection in the program. 

ERG’s review of fuel rates calculated using standard PIDs versus those calculated using 
injector fuel rate (an enhanced PID) suggests more investigation of the accuracy of fuel rates 
calculated using enhanced PIDs may be worthwhile. Although some differences in the rates 
appeared to be a result of different signal rise and fall rates during transients, other differences 
indicated some systematic bias may be present in the injector fuel rate data during certain 
operating modes. This could result in a bias in both instantaneous and average fuel rate results 
from the main study. 

Conducting a study that extends over a year will capture seasonal variations in fuel 
economy and provide data that will yield insight into how various environmental factors affect 
fuel economy. Not performing a year-long study would largely eliminate the ability to assess the 
effects of potentially important seasonal temperature variation and seasonal trip behavior. A 
study that is conducted in a limited number of locations (a few regions and/or cities) may be 
more affordable than a true “nationwide” study where participants are far apart, in terms of 
managing datalogger installations, participant support, and ongoing study and data management. 
Datalogger costs could be substantially reduced if the main study were designed to be ongoing, 
instead of a one-time study. This would allow 20-50 vehicles to be instrumented and the 
dataloggers reused to gather additional data each year. 

While it is feasible to expect that a large number of participants will be able to perform 
their own datalogger installations, some participants will likely require installation support of 
some type. Connector locations that result in a datalogger or its cabling being installed near 
brake or accelerator pedals or in locations where they can be bumped or snagged can be 
problematic from participant safety and data completeness standpoints. 

Recommendations for Additional Work – Based on information learned during this 
study, ERG recommends additional analyses of some key issues prior to moving forward with a 
larger-scale study, as this additional recommended analysis could help provide information 
needed to reduce study costs and enhance data quality. Details of the items in the following list 
of recommended tasks are provided in the main body of the report.  

 Develop method for estimating MAF from MAP to allow estimation5 of FE for 
MAP-controlled fuel metering systems;  

 Refine methods for calculating fuel rate for gasoline-powered vehicles equipped 
with narrow-band oxygen sensors; 

                                                 
5 We acknowledge that a direct calculation of MAF from MAP values applicable to a wide variety of engine 
technologies does not appear to be possible. However, an analysis of existing data could provide a method to 
estimate MAF values from MAP values with relatively low error. Even so, the MAP-to-MAF conversion error 
would produce fuel economy estimates with larger errors in second-by-second and trip-average fuel economy values 
for MAP-based fuel metering systems than for MAF-based fuel metering systems. The size of the increased error 
may be acceptable.  
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 Develop methods for calculating fuel rate for diesel-powered vehicles; 

 Determine the standard PIDs and non-standard PIDs6 that are broadcast for a 
portion of representatives of the light-duty vehicle fleet, considering vehicle 
make, model, model year, engine and fuel type, and driver-selected drivetrain 
operating modes (e.g., sport, eco); 

 Perform additional evaluation of accuracy of enhanced PID-based fuel rate 
estimates; and 

 Collect and analyze additional OBD / dynamometer data from ongoing laboratory 
work from existing test programs. 

 
 

  

                                                 
6 In particular, non-standard PIDs for air-conditioning compressor status, hybrid vehicle battery state of charge, and 
those that can be used to impute fuel rate. 
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1.0 Introduction 

The International Council on Clean Transportation (ICCT) has asked Eastern Research 

Group (ERG) to conduct this pilot study to investigate the feasibility of collecting second-by-

second data on a randomly selected set of light-duty OBDII-compliant in-use personal vehicles 

in the United States. The goal is to use the results of this pilot study to help develop a subsequent 

full-scale study. The focus of the full-scale nationwide data collection, which will be referred to 

as “the main study” in this report, would be to collect data that quantifies in-use fuel economy 

(FE), which is the distance driven per volume of fuel, and the major factors that influence in-use 

fuel economy. 

The reader is invited to read this report as a thought exercise that covers most of the 

technical and logistic elements of a full-scale FE data collection study in the U.S. Even though at 

times the report may read as though decisions have already been made by ERG or ICCT, this 

report is in no way the final blueprint for the main study. The main purpose of this pilot study 

report is to illuminate some of the challenges of a fuel economy study and to suggest some 

possible solutions and approaches. With further thoughts and discussion among interested 

parties, cost-effective solutions may ultimately lead to a main study. 

The results presented in this report are function of a set of assumptions and project 

objectives that have a direct impact on the specific design elements, such as sampling size, 

datalogging technologies, recruitment methods, and final costs. Those objectives would be 

discussed and adapted to specific requirements by the full-scale study funding entity or entities 

(i.e., consortium). We expect that modifying the objective would have an impact on methods and 

therefore total costs, but that most cost elements would remain intact.  

Higher worldwide demand for gasoline and diesel fuels as a result of higher vehicle miles 

traveled, acknowledgment of finite fossil fuel resources, and political unrest in petroleum 

producing countries are some of the factors that have caused the price of motor fuels at the pump 

to increase. Additionally, every atom of carbon consumed by a motor vehicle produces one 

molecule of CO2, a greenhouse gas. As a result of these financial and environmental pressures, 

the federal government, engine and vehicle manufacturers, and other organizations have been 

working to improve the fuel economy of future vehicles. The engine and vehicle manufacturers 

have responded to the growing need for improved fuel economy vehicles by making rapid 

changes to the technologies of the vehicles that they bring to the marketplace. The number of 

gasoline/electric hybrid vehicles in the fleet has increased rapidly over the last 10 years. The use 

of continuously variable transmissions and automatic transmissions with more than four gears, 
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which allow engines to be operated closer to their maximum efficiencies, are more and more 

common in the fleet. Gasoline direct injection (GDI), in which gasoline is injected directly into 

the combustion chamber, has gone from virtually zero production levels in 2007 to roughly 1/4 

of the U.S. production of 2013 of light-duty vehicles. Recently, Bosch celebrated the production 

of the 50-millionth GDI injector for the worldwide market. 

The vehicle sample would be instrumented with dataloggers that collect OBDII 

information. The vehicles would be sampled from the national fleet (50 states plus District of 

Columbia) of 1996 and newer light-duty OBDII-compliant on-road vehicles with gross vehicle 

weights less than 8,501 pounds. Other on-road vehicles, such as OBDII-compliant Class 2b 

gasoline and diesel vehicles might be added to the study, depending on the desires of the main 

study’s funding organizations. The study would not instrument motorcycles or vehicles that have 

electric plug-in capability. 

Data from such a nationwide study could be used to answer a number of questions: 

 What factors affect vehicle fuel economy and by how much? 
 

 What driver behavior factors influence in-use fuel economy and by how much? 
 

 How do weather and road grade affect fuel economy? 
 

 How does driving behavior (speed, acceleration, trip length) vary by season, level 
of congestion, and region? Does driving behavior differ by technology type (e.g. 
diesel and hybrid vehicles)? 
 

 What are the ranges and distributions of fuel economy influencing factors that 
U.S. vehicles are exposed to? 
 

 How does in-use fuel economy deviate from the new vehicle fuel economy and 
environment label (FEEL) values? 

 
 What are the estimated costs associated with recruiting vehicles, the datalogger, 

the cost of data transmission and other main cost sources? 

 
Collecting this data would require a lengthy, extensive project, with many uncertainties 

about the sample size needed, the best way to recruit vehicles, the capabilities of dataloggers, and 

the best way to calculate fuel economy. Thus, ICCT funded a pilot study to address these 

uncertainties and facilitate design of a full-scale data collection program.  
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This report documents the results and findings of the ICCT fuel economy pilot study. The 

goal of this pilot study was to explore the feasibility and evaluate options and costs for the 

various methodologies and technologies that would be needed to collect in-use fuel economy 

data from passenger vehicles. The following four areas were investigated: 

 Sampling: Describe options for defining the sample, including size and structure, 
of vehicles for the full-scale project. 
 

 Recruiting: Identify a methodology and estimate the cost of recruiting passenger 
vehicles, installing dataloggers, and collecting data according to the sample size 
for the full scale project. 
 

 Datalogger: Identify options for a data collection device and method for 
calculating in-use fuel economy, factors that affect fuel economy, and methods to 
record and/or transmit the information; also estimate the cost of alternative 
devices and measured methods, according to the sample size of the full scale 
project.  
 

 Evaluate the accuracy of fuel economy calculations from dataloggers and 
assessing the cost of alternative methods to improve accuracy 
 

Section 2 begins below with brief background discussions on the vehicle population 

under consideration for this fuel economy study and a background on fuel economy. The 

discussion of sample size and sample structure is included in Section 3. Alternative methods of 

defining the sample are provided. Section 4 provides a description of a vehicle recruitment 

methodology based on a selection of the options defined in Section 3. Section 5 describes the 

procedures that were used to evaluate different dataloggers. This section also includes a brief 

analysis of sample data from a top-ranked datalogger. Part of Section 5 also includes an analysis 

of data obtained from earlier light-duty vehicle datalogger projects to evaluate different methods 

of calculating fuel economy from OBDII information. Section 6 estimates the cost for a future 

full-scale private-vehicle fuel-economy study. The costs include estimates for vehicle sampling, 

recruitment, datalogger hardware, and the cost for data collection for a one year instrumentation 

period. 
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2.0 Background 

2.1 Vehicle Population under Consideration 

Table 2-1 shows the estimated number of registered light-duty vehicles in the United 

States at the end of the 2013 model year. The table shows counts for the vehicles under 

consideration in this pilot study, that is, 1996-2013 model year, light-duty OBDII-compliant 

vehicles that are not all-electric or plug-in hybrid vehicles and that are under 8,501 pounds 

GVWR. The second and third columns of the table show the estimated populations of gasoline 

and diesel light-duty vehicles from EPA’s MOVES model. Those values were obtained from 

counts from MOVES 2010b for vehicles categorized as Passenger Cars and Passenger Trucks. 

The fourth, fifth, and sixth columns of the table show percentage estimates as provided by EPA’s 

fuel economy report.7 The italicized values in these columns for 2012 and 2013 model years 

were extrapolated by the authors. The percent of the fleet that is port fuel injection (PFI) is given 

in the seventh column and was calculated by difference. The values in the second and third 

columns of Table 2-1 (from MOVES) were used to calculate the populations by model year and 

vehicle propulsion system in the eighth through eleventh columns.  

The light-duty fleet fractions for diesels and hybrids in Table 2-1 were compared with an 

analysis of 1Q2013 Colorado and 1Q2011 Maryland registration data. The diesel fractions for 

these two registration datasets were determined from the registration database fuel field and /or 

decodes of the database VINs and assignment to the light-duty category based on estimated 

GVWs of 8,500 pounds or less.8 Figure 2-1 compares the Colorado and Maryland diesel 

fractions with the diesel fractions determined from the counts in the second and third columns of 

Table 2-1. The figure shows that the Colorado and Maryland diesel fractions generally fall above 

and below the MOVES estimates, and therefore tend to confirm the MOVES diesel fractions. 

                                                 
7 “Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 
2011,” Transportation and Climate Division, Office of Transportation and Air Quality, U.S. Environmental 
Protection Agency, EPA-420-R-12-001a, March 2012. 
8 Note that the method of designating vehicles as light-duty is different for the MOVES and for the state registration 
databases. These different bases mean that the fraction of vehicles determined from these three sources can be only 
approximately compared. 
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Table 2-1.  Light-Duty Propulsion System Model Year Trends  

Model  
Year 

Registered Light-
Duty Vehicles in SEP 

20139 

Percent of Vehicles  
in the Light-Duty Fleet10 

Registered Light-Duty Vehicles in SEP 2013 

Gasoline Diesel Diesel11 Hybrid GDI PFI Diesel Hybrid GDI PFI Total 

1996 4,027,120 37,835 0.1 0.0 0.0 99.9 37,835 0 0 4,027,120 4,064,955
1997 4,833,550 41,469 0.1 0.0 0.0 99.9 41,469 0 0 4,833,550 4,875,019
1998 5,881,630 26,411 0.1 0.0 0.0 99.9 26,411 0 0 5,881,630 5,908,041
1999 7,440,710 74,526 0.1 0.0 0.0 99.9 74,526 0 0 7,440,710 7,515,236
2000 9,160,280 88,715 0.1 0.0 0.0 99.9 88,715 0 0 9,160,280 9,248,995
2001 10,236,490 78,812 0.1 0.0 0.0 99.9 78,812 0 0 10,236,490 10,315,302
2002 10,871,950 84,078 0.2 0.2 0.0 99.6 84,078 21,912 0 10,850,038 10,956,028
2003 11,191,940 89,164 0.2 0.3 0.0 99.5 89,164 33,843 0 11,158,097 11,281,104
2004 11,934,050 96,973 0.1 0.5 0.0 99.4 96,973 60,155 0 11,873,895 12,031,023
2005 12,555,020 101,508 0.3 1.1 0.0 98.6 101,508 139,222 0 12,415,798 12,656,528
2006 12,667,430 158,254 0.4 1.5 0.0 98.1 158,254 192,385 0 12,475,045 12,825,684
2007 12,719,070 159,777 0.1 2.2 0.0 97.7 159,777 283,335 0 12,435,735 12,878,847
2008 10,378,330 116,682 0.1 2.5 2.3 95.1 116,682 262,375 241,385 9,874,569 10,495,012
2009 9,031,740 97,030 0.5 2.3 4.2 93.0 97,030 209,962 383,408 8,438,370 9,128,770
2010 11,638,410 134,860 0.7 3.8 8.3 87.2 134,860 447,384 977,181 10,213,844 11,773,270
2011 13,142,060 150,039 0.6 4.0 13.7 81.7 150,039 531,684 1,821,018 10,789,359 13,292,099
2012 14,079,250 157,003 1.0 4.3 17.7 77.0 157,003 612,159 2,519,817 10,947,274 14,236,253

2013 14,929,080 165,053 1.0 4.6 25.7 68.7 165,053 694,330 3,879,192 10,355,558 15,094,133

      Totals: 1,858,187 3,488,746 9,822,002 173,407,362 188,576,297
  Fraction of 1996-2013 Light-Duty Fleet: 0.010 0.019 0.052 0.920  

                                                 
9 MOVES 2010b. 
10 “Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2011,” Transportation and Climate Division, 
Office of Transportation and Air Quality, U.S. Environmental Protection Agency, EPA-420-R-12-001a, March 2012. 
11 The diesel percentages in this column were not used for the calculations. The values are shown just for completeness. 
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Figure 2-1.  Comparison of Diesel Fractions of Light-Duty Fleets  

 
 

Figure 2-2 compares the hybrid fractions for the two registration databases with the 

hybrid fractions presented in the March 2012 EPA report.12 In this instance the sources used to 

decode the VINs did not always reveal whether or not a vehicle was a hybrid. This behavior 

produced a range of possible hybrid fractions for each model year as designated by the green and 

red vertical colored bars in the figure. The lower end of the bar was derived from the vehicles 

whose VINs indicated that they were hybrids. The values for the upper end of the bars were 

derived from counts of all vehicles in series for which a hybrid powertrain was available as an 

option. Thus, the true value for the fraction of hybrids lies somewhere on each colored bar. The 

figure shows that in general the hybrid fraction trend as reported in the March 2012 EPA report 

passes through the error bars. 

                                                 
12 “Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 
2011,” Transportation and Climate Division, Office of Transportation and Air Quality, U.S. Environmental 
Protection Agency, EPA-420-R-12-001a, March 2012. 
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Figure 2-2.  Comparison of Hybrid Fractions of Light-Duty Fleets 

 
  

Based on the comparisons shown in Figures 2-1 and 2-2, we will use the values in Table 

2-1 to estimate the diesel and hybrid fractions of the light-duty fleet. 

This report discusses four propulsion systems: diesel, hybrid, gasoline direct injection 

(GDI), and port fuel injection (PFI). The values at the bottom of Table 2-1 indicate that in 

September 2013, the registered light-duty fleet is estimated from the values in this table to be 

almost 189,000,000 vehicles with an estimated 1.0% diesel, 1.9% hybrid, 5.2% GDI, and 92% 

PFI. 

To examine the model year trends of propulsion system, the eighth through eleventh 

columns were converted to percentages and plotted in Figure 2-3. The diesel plot shows that the 

fraction of diesels produced over the last decade has been relatively constant at 1% of the fleet. 

The plot for hybrids shows that essentially no hybrids were produced before about 2002. Hybrid 

production has been increasing rapidly since that time and in 2013 gasoline hybrids make up  
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Figure 2-3.  Light-Duty Propulsion System Model Year Trends  
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approximately 4% of the light-duty vehicle production. The GDI plot shows an even more rapid 

introduction of this technology into the marketplace than hybrids. The plot indicates essentially 

no GDIs were produced before 2008 but approximately 25% of the 2013 production will be 

gasoline direct injection vehicles. If this trend in GDI continues, the light-duty fleet will be 

dominated by GDI vehicles in just a few years. The PFI plot shows that this technology has 

dominated the market from 1996 through about 2005 at approximately 98%. Since then, as 

hybrid and GDI production has increased, the relative production of PFIs has dropped 

substantially. 

Class 2b on-road gasoline and diesel vehicles could also be considered for inclusion in 

the main study. These vehicles may be used for personal transportation or for business purposes. 

In addition, only a portion of these vehicles are OBDII compliant. 

2.2 Measures of Overall Fuel Economy 

One measure of fuel economy is provided for new vehicles by the Fuel Economy and 

Environment Label (FEEL) that is placed on new cars that are for sale. An example of an FEEL 

is shown Figure 2-4 for a gasoline vehicle. The upper left hand corner of the label shows three 

values that give the vehicle shopper an indication of the fuel economy tendency of the vehicle: 

the FEEL City MPG, the FEEL Highway MPG, and the FEEL Combined MPG. For the label in 

the figure, these are 22, 32, and 26 miles per gallon (mpg). 

Figure 2-4.  Example Fuel Economy and Environment Label 
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The procedures used to determine the FEEL values for City MPG, Highway MPG, and 

Combined MPG are documented elsewhere. Briefly, the procedures involve testing a vehicle on 

a chassis dynamometer using standard driving cycles. The fuel economy results from those 

chassis dynamometer tests are weighted in various ways to produce the three MPG values on the 

FEEL label. These procedures test all vehicles under a consistent set of conditions. While those 

test conditions tend to produce FEEL values that are typical of average fuel economies that a 

vehicle may produce in typical use, the test conditions themselves cover a relatively narrow 

range in comparison with the range of conditions that the vehicle may experience during its 

service life. 

The FEEL values for different combinations of model year, make, model, and engine are 

available as Excel spreadsheet that can be downloaded from www.fueleconomy.gov. The plots in 

Figure 2-5 show a brief examination of FEEL values for the 1996-2013 light-duty vehicles in 

that spreadsheet. Each plot is for one of the four propulsion systems that will be the focus of the 

main study. Each point in these plots represents one combination of model year, make, model, 

and engine. These plots are not an indication of the number of vehicles on the road or the number 

of vehicles that were produced for these different propulsion system technologies.  

Figure 2-5 plots the tabulated values of the FEEL City MPG divided by the FEEL 

Highway MPG vs. the FEEL Highway MPG value for the four different propulsion systems. The 

FEEL Highway value is an indication of the fuel economy tendency of the vehicle primarily 

under high speed cruising conditions when accelerations are moderately low and speeds are 

relatively constant and high. These values are generally a measure of the fuel economy of the 

vehicle under relatively high efficiency conditions. The plots show that for 1996-2013 vehicles, 

the FEEL Highway values of PFIs vehicles range from about 12 to 40 mpg, the GDI vehicles 

range from about 16 to 40 mpg, the diesel vehicles range from about 16 to 44 mpg, and the 

gasoline hybrid vehicles range from approximately 16 to 60 mpg. 

The vertical axis is the ratio of the FEEL City MPG divided by the FEEL Highway MPG. 

The FEEL City value is intended to reflect the fuel economy that a vehicle may obtain in urban 

driving – driving with more accelerations and decelerations and generally lower speed than 

during highway driving. The ratio of FEEL City to FEEL Highway is an indication of the 

amount of fuel economy debits that are produced when moving from highway to city driving. If 

there were no city debits relative to highway driving, then the ratio of FEEL City to FEEL 

Highway would be 1, which is shown in each plot by a horizontal dashed line. The plots show a 

ratio of about 0.5 to 0.95 for PFI vehicles, about 0.55 to 0.85 for GDI vehicles, about 0.65 to 

0.85 for diesel vehicles, and about 0.7 to 1.15 for gasoline hybrid vehicles. 
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Among the four propulsion technologies, the plot in Figure 2-5 for hybrids is perhaps 

most different from the plots for the other three technologies. The most noticeable difference is 

that the FEEL City/Highway ratio for hybrids can exceed 1. This occurs for certain combinations 

of model year, make, model, and engine. Many other hybrids have FEEL City/Highway ratios 

substantially below 1; however, none are much lower than 0.7. The scatter of FEEL 

City/Highway ratios shows that just because a vehicle is a hybrid does not mean that its FEEL 

City value will be greater than its FEEL Highway value. Thus, a hybrid vehicle’s relative city 

and highway fuel economies depend on the hybrid technology design. 

The range of FEEL Highway values for hybrids indicates that hybrids can have highway 

fuel economies that are just as low as the lowest FEEL Highway values for GDIs and diesels and 

almost as low as the lowest FEEL Highway values for PFIs. The highest FEEL highway values 

for hybrids are substantially higher than the FEEL Highway values for all of the other three 

propulsion technologies. Therefore, although hybrids can have high FEEL Highway ratings, all 

hybrids do not have them.  

The examination of the plots in Figure 2-5 indicates that different vehicle and drivetrain 

designs have different fuel economy performance even within the same propulsion system. This 

is a consequence of the choices that manufacturers make when they design the vehicle. Because 

of different engineering designs and even within each type of propulsion system, individual 

vehicles to be instrumented in the main study should be selected to cover a wide range of FEEL 

Highway values and a wide range of FEEL City/Highway ratios so that the influences of 

different driver behaviors, driving conditions, and environmental factors can be generalized in 

any future analysis of the dataset to be produced by the main study. 

2.3 Measures of Near-Instantaneous Fuel Economy 

The fuel economies that a vehicle owner experiences can differ from the values that are 

printed on the FEEL. In fact, the FEEL itself states that “actual results will vary” as shown at the 

bottom of the example in Figure 2-4. The cause of deviations and the size of the deviations from 

the FEEL values is one of the questions that could be answered from an analysis of the main 

study’s dataset.  
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Figure 2-5.  FEEL City and Highway Values for 1996-2013 Light-Duty Vehicles  

 

 

PFI Diesel

GDI Hybrid
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In addition to differences in the average fuel economies that an owner will see, second-

by-second differences will be present. Owners will see these differences if their vehicle is 

equipped with an in-dash fuel economy display. The second-by-second fuel economy 

measurements on the vehicles instrumented in the main study would also capture these 

deviations. An analysis of the second-by-second fluctuations in fuel economy as a function of the 

second-by-second fluctuations in variables that affect fuel economy would be one of the main 

products of an analysis of the main study dataset. 

To get an advance view of second-by-second fuel economy data, Figure 2-6 shows the 

distribution of one-second fuel economy values from one vehicle in EPA’s Kansas City study13. 

The fuel economy values were determined from measurements of exhaust concentrations and 

flow rate using a portable emissions measurement system (PEMS) that was installed on the 

vehicle while the vehicle was driven in normal use. The vehicle was a 2003 Ford F150 pickup 

truck with a 4.6 liter port fuel injection engine. The FEEL values, which were obtained from 

fueleconomy.gov, for this vehicle are City: 14 mpg, Highway: 19 mpg, and Combined: 16 mpg. 

Data were available for only 2,684 seconds of operation. The average fuel economy observed 

during this period was 16.3 mpg, which is quite close to the FEEL Combined value of 16 mpg. 

Figure 2-6 shows a tri-modal distribution of one-second fuel economy values. The lowest 

mode is at 0 mpg. The plot was made so that all observations in this mode had fuel economy 

values of exactly 0 mpg. These observations represent operation of when the vehicle is not 

moving at all such as when the vehicle is idling in a driveway or at a stoplight. The middle mode 

has FE values from just above 0 to about 37 mpg. This mode is likely to include vehicle 

operation during steady cruising, acceleration, or going up grades. Note that the location of the 

FEEL city, highway, and combined values are in the middle mode. The third mode has 

instantaneous FE values greater than 37 mpg. Operation during this mode will likely be when the 

vehicle is decelerating, going down grades, or when the driver’s foot has decreased the throttle 

position. 

 

                                                 
13 S. Kishan, A.D. Burnette, S.W. Fincher, M.A. Sabisch, W. Crews, R. Snow, M. Zmud, R. Santos, S. Bricka, E. 
Fujita, D. Campbell, P. Arnott, “Kansas City PM Characterization Study, Final Report,” prepared for U.S. 
Environmental Protection Agency, prepared by Eastern Research Group, BKI, NuStats, Desert Research Institute, 
October 27, 2006, http://www.epa.gov/oms/emission-factors-research/420r08009.pdf. 
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Figure 2-6.  Sample Fuel Economy Measurements  
for an In-Use 2003 Ford F150 4.6L PFI  

 
 

Figure 2-6 demonstrates that the observed second-by-second fuel economies for an in-use 

vehicle deviate substantially from the FEEL values. It can be expected that most non-hybrid 

vehicles will have second-by-second fuel economy distributions that look similar to Figure 2-6, 

that is a tri-model distribution. Differences in driving behavior, road conditions, vehicle 

environment, and vehicle drivetrain design will likely produce shifts in the distributions of the 

three modes. The factors that cause those shifts will be one of the questions to be answered in an 

analysis of the main study’s dataset. 

2.4 Mathematical Properties of Fuel Economy Values 

Fuel economy is calculated as the ratio of the distance traveled to the volume of fuel used 

or as the ratio of the vehicle speed to the fuel rate. Because the fuel economy is a ratio, it has 

special mathematical properties that can be important during data analysis and, therefore, can be 

important during the planning of the data collection.  

Let us consider the fuel economy for the discussions here as the ratio of the vehicle speed 

to the fuel rate. The speed of the vehicle has values from 0 to approximately 80 miles per hour. 

The fuel rate has values that range from just above 0 mL/s, which occur when the vehicle is 

idling, up to the maximum fuel rate for the engine. For engines that shut fuel off during 
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decelerations or for some hybrids when the vehicle is not moving, the fuel rate will be 0 mL/s. 

The ratio of the vehicle speed to the fuel rate therefore, will have values from 0 mpg to infinity 

or at least to very large values.  

It may be preferable to think about the analysis of fuel economy values in terms of the 

ratio of two analyses. The first analysis would be for the numerator, where the factors that 

influence vehicle speed would be considered, and a second analysis would be for the 

denominator, where the factors that influence fuel rate would be considered. By separating the 

analysis of fuel economy into these two separate analyses, any aberrations caused by fuel 

economy values that approach infinity would be avoided. 

2.5 Factors that Influence Fuel Economy 

Many factors can be expected to have influences on the fuel economy of a vehicle. Some 

factors could have large influences and, therefore, would be important to vary in the main study. 

Other factors could have minor influences on fuel economy and might not be cost-effective to 

investigate. As part of the first activity in designing the sampling plan and considering what 

variables to measure using the datalogger or other techniques, we have created Table 2-2 of 

factors with their estimated influences on fuel economy. It should be noted that the estimated 

effects on fuel economy were not usually a result of any data or literature search but were based 

on engineering judgment.  

The first column of the table lists factors that potentially influence the second-by-second 

fuel economy. Several of these factors are related to each other. For example, driver 

aggressiveness and acceleration would be related to each other. Nevertheless, both are included 

in the table in the event that one is more convenient to measure than the other. The second, third, 

and fourth columns of the table list low, medium, and high values for the factor under 

consideration. The fifth, sixth, and seventh columns are estimates of the effect of those values on 

fuel economy that result from changes in the factor. For example, the first row in the table 

indicates that a moderately large acceleration of 7 mph/s might produce a decrease in fuel 

economy of about 80% relative to a steady cruise at 0 mph/s. On the other hand, a deceleration of 

-10 mph/s might cause the fuel economy to go three times higher than the fuel economy under 

steady-state cruise conditions.  
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Table 2-2.  Factors that Influence Fuel Economy 

FE-Influencing Factor Range of Factor Estimated Effect on FE 
(%) 

 Low Mid High Low Mid High 
Acceleration 7 mph/s 0 mph/s -10 mph/s -80% 0% 300% 
Engine torque, inst. 140 N-m 30 N-m 0 N-m -90% 0% 50% 
Engine MAF 10,000 L/min 1,000 L/min 0 L/min -90% 0% 100% 
Engine MAP 100 kPa 40 kPa 30 kPa -90% 0% 100% 
Throttle position WOT steady-state 0% -80% 0% 500% 
Road grade 3% 0% -3% -50% 0% 200% 
FEEL Composite MPG low medium high -50% 0% 50% 
FEEL City MPG low medium high -50% 0% 50% 
FEEL Highway MPG low medium high -50% 0% 50% 
Speed 10 mph 45 mph 70 mph -80% 0% -50% 
Vehicle weight, curb 4500# 3200# 2200# -40% 0% 40% 
Transmission gear First Fourth n/a -70% 0% n/a 
Propulsion System PFI Diesel, GDI Hybrid 0% 10% 20% 
Total accumulated miles 200,000 miles 100,000 miles 30,000 miles -25% 0% 5% 
A/C compressor status On n/a Off -20% n/a 0% 
Engine warm-up status 12 hour soak warmed-up n/a 20% 0% n/a 
Driver aggressiveness jumpy calm n/a -10% 0% n/a 
Altitude, inst. 5000 ft 1000 ft 0 ft -15% -2% 0% 
Engine RPM within a gear 800 rpm 1200 rpm 3000 rpm -10% 0% -10% 
Vehicle age 16 years 6 years 2 years -25% 0% 5% 
Car/Truck truck car n/a -10% 0% n/s 
Cargo weight 0 lb 1000lb n/a 0% -10% n/a 
Wind 20 mph head 0 mph 20 mph tail -4% 0% 4% 
Driver age >75 yo 25yo -75yo <25 yo -15% 0% 3% 
Socio-economics <40k$ 40k$ - 250k$ >250k$ -10% 0% 0% 
Tire inflation pressure 15 psi 30 psi 40 psi -5% -2% 0% 
New-vehicle break-in odo<500 mi odo>500 mi n/a -5% 0% n/a 
Fuel ethanol content 10% EtOH 0% EtOH n/a -3.4% 0% n/a 
Throttle jitter none pulsing n/a 0% 3% n/a 
Road dry/wet/ice/snow snow wet dry -3% -1% 0% 
Aerodynamics, inst. roof/trailer smooth n/a -3% 0% n/a 
Ambient Temperature, inst. 105 F 70 F 30 F -2% 0% 2% 
Alternator load 60 A 20 A 0 A -2% -1% 0% 
Tire age <3 months old >2 years old n/a -1% 0% n/a 
Driver gender Male Female n/a 0% 0% n/a 
Transmission type Manual Automatic n/a 0% 0% n/a 
Make many many many 0% 0% 0% 
Model many many many 0% 0% 0% 
Manufacturer many many many 0% 0% 0% 
Annual miles driven <3000 3000-25000 >25000 0% 0% 0% 
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The factors are listed in Table 2-2 in the approximate order of their anticipated influence 

on fuel economy. So, for example, acceleration is expected to have the largest influence on fuel 

economy and it is listed at the top of the table. On the other hand, transmission type, that is, 

whether the transmission is a manual or an automatic transmission, was judged to have a small 

effect on fuel economy and, therefore, it is listed near the bottom of the table. It should be clear 

to the reader that the position of a factor in the ranking is influenced not only by the engineering 

judgment to estimate the size of the effect on fuel economy but also by the values that were 

considered for the low, medium, and high values in the range of factors. The idea of the ranking 

is to think about the different factors that could affect fuel economy and to at least approximately 

rank them. The ranking helps distinguish FE-dominant factors from FE-neutral factors so that 

when designing the vehicle sample or when selecting measured variables the most influential or 

most important variables are considered. 

Note that of all the variables listed in Table 2-2 as having an influence on fuel economy, 

only throttle position and about seven other vehicle and engine variables (all are italicized) are 

varied during the determination of the FEEL values for a given vehicle so that the tested vehicle 

can follow the required driving cycle trace on the chassis dynamometer. All of the other 

variables (except the ten variables that are specific to the vehicle design and are in bold font) are 

varied during customer use but are not varied during dynamometer testing for the FEEL. 
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3.0 Sample Size and Structure Definition 

The first task of the ICCT Pilot Study is to develop alternative sampling plans for 

selecting vehicles from the U.S. fleet for the main study to be instrumented with OBDII 

dataloggers with the goal of measuring instantaneous fuel economy. The vehicle sample would 

be taken from the national fleet (50 states plus District of Columbia) of 1996 and newer light-

duty OBDII-compliant on-road vehicles. Note that for diesels, only 1998 and newer vehicles are 

OBDII compliant. In addition, only a portion of 1996 and newer Class 2b vehicles are OBDII 

compliant. 

The data obtained from the instrumentation of the sample vehicles during the main study 

needs to be obtained such that analysis of that data would be able to describe fuel economy 

trends that are representative or typical of a variety of different vehicle technologies for typical 

behavior and operating environments of vehicles in the U.S. fleet.  

The simplest approach for selecting a vehicle sample that would meet the objective 

would be to create a pure random sample. The problem with a pure random sample is that it is 

inefficient. This is a major problem since the cost of selecting and instrumenting a single vehicle 

will be high, and for a pure random sample a large number of vehicles would need to be 

instrumented to ensure that a sufficient number of the more unusual technologies and more 

unusual vehicle operating environments would be in the sample. A more efficient approach is to 

use a stratified, random sample. To achieve the objective with a stratified, random sample, we 

have addressed three separate notions for the main study: 

1. Stratification – Create a sample of vehicles from the U.S. fleet based on a few 
(less than or equal to three) attributes of vehicle technology that are closely 
associated with overall fuel economy tendency. The attributes should be easily 
obtainable, quantitative, and specific to the individual vehicles under 
consideration for the sample. For this activity, using attributes that are closely 
related to fuel economy tendency is most important. 

2. Representativeness – Next in importance, attempt to ensure that the sample as a 
whole will be likely to operate during second-by-second data collection in a range 
of environments, including driver behavior, roadway characteristics, cargo, and 
weather, that are typical of the range of environments across the U.S. We want the 
sample to be an unbiased reflection of the entire country and not unduly weighted 
towards, for example, urban vehicles or vehicles is specific regions of the country. 

3. Analysis – Rapidly changing conditions, specifically the second-by-second 
quantities obtained by on-board dataloggers or even the ranges of these quantities, 
cannot be used to select vehicles for the sample or ensure representativeness 
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because those quantities cannot be known before the vehicles are selected and 
instrumented. However, once the second-by-second data has been obtained over a 
long period of time on sample vehicles, analyses will allow fuel economy to be 
determined as a function of second-by-second variables such as road grade, speed, 
acceleration, and ambient temperature. 

The discussion begins in Section 3.1 with a consideration of the factors that influence 

instantaneous fuel economy because the variables that would be used to define the main study’s 

stratification plan and fleet representation plan would be selected from those factors. Section 3.2 

describes two options for a stratification plan. Section 3.3 describes two options for a U.S. fleet 

representation plan. Other plans could certainly be devised. 

3.1 Consideration of Factors for Sample Creation 

The list of factors in Table 2-2 can be considered for use in defining the vehicle sample 

and for other uses. The factors have been tentatively characterized by four descriptors as shown 

in Table 3-1. The assignments have been made based on a whether or not variables are functions 

of time, whether the variables could be objectively quantified for a particular vehicle or driver, 

whether the distribution of the variable for the U.S. fleet was known or could be easily 

determined, and the number of levels that a categorical variable might have.  

Table 3-1 shows a division of the variables into Second-by-Second Data (Column 2) 

variables and Basic Data variables (Columns 3, 4, and 5). 

Second-by-Second Data variables are variables that change rapidly with time and whose 

changes with time can be expected to affect instantaneous fuel economy or are needed to 

calculate instantaneous fuel economy. Second-by-Second Data variables are candidates for 

acquisition by the datalogger. Because Second-by-Second Data variables change rapidly with 

time and are not known before data is logged from vehicles in the sample, those variables cannot 

be used to select vehicles for the sample. 

Basic Data variables are variables that characterize the vehicle, driver, or vehicle home 

location and are constant or change slowly with time. In, general, Basic Data variables would be 

recorded once and therefore do not need to be acquired by the datalogger. Basic Data variables 

can be further assigned to categories based on their desired use in creating the sample and 

representing the U.S. fleet.  
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Table 3-1.  Candidate Factors for Sample Design and Data Collection 

FE-Influencing  
Factor 

Second- 
by- 

Second  
Candidates 

Basic Data Variables 

Stratification 
Candidates 

U.S. Fleet  
Representation  

Candidates 

Other  
Basic Data  
Candidates 

Acceleration X    
Engine torque, inst. X    
Engine MAF X    
Engine MAP X    
Throttle position X    
Road grade X    
FEEL Composite MPG   S1   
FEEL Highway MPG   S2   
FEEL City/Highway ratio   S2   
Speed X    
Vehicle weight, curb     O 
Transmission gear X    
Propulsion System   S1, S2   
Total accumulated miles    R  
A/C compressor status X    
Engine warm-up status X    
Driver aggressiveness X    
Altitude of Home Location    R  
Altitude, inst. X    
Engine RPM within a gear X    
Vehicle age    R  
Car/Truck    R  
Cargo weight X    
Wind X    
Driver age    R  
Socio-economics    R  
Tire inflation pressure X    
New-vehicle break-in     O 
Fuel ethanol content X    
Throttle jitter X    
Precipitation, climatic    R  
Road dry/wet/ice/snow X    
Aerodynamics, inst. X    
Ambient Temperature, climatic    R  
Ambient Temperature, inst. X    
Alternator load X    
Tire age     O 
Driver gender    R  
Transmission type    R  
Make     O 
Model     O 
Manufacturer    R  
Annual miles driven   S1   
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The discussion below discusses each of the four characterizations of variables presented 

in Table 3-1. These characterizations are intended to begin the consideration of variables for 

creating a vehicle sample. Planning for the main study can certainly modify the characterizations 

suggested in this pilot study and specifically those shown in Table 3-1. 

Second-by-Second Variable Candidates – The second column in Table 3-1 indicates 

the second-by-second variable candidates with an X. In general, these are variables that are time 

dependent and follow operation and the operating environment of the vehicle. Some variables 

describe vehicle operation, engine operation, roadway conditions, transmission operation, air-

conditioning operation, weather that the vehicle experiences, changes in cargo weight and 

vehicle aerodynamics due to cargo, changes in fuel properties, and changes in tire properties. 

Most of these variables are functions of time in the normal operation of any vehicle. These 

include, for example, acceleration, transmission gear, A/C compressor status, cargo weight, 

wind, and aerodynamics. A few of these variables change slowly with time or are difficult to 

measure using a survey. These include driver aggressiveness, tire inflation pressure, and fuel 

ethanol content. Because second-by-second variables can vary rapidly with time and cannot be 

known for an individual vehicle before datalogger installation, these variables cannot be used to 

select vehicles for the sample. However, these variables are important candidates to consider for 

collection with the datalogger. 

Stratification Candidates – The vehicles in the sample could be selected from the U.S. 

fleet in two different ways: 1) random selection, or 2) stratified, random selection. Random 

selection would tend to result in a vehicle sample that has characteristics of the most common 

vehicles in the fleet; the less common technologies, for example, would not likely be well 

represented in the sample. Relatively small samples, which may describe the main study’s 

sample, can benefit from the stratified, random method in which the sample is enriched in 

vehicles with less common attributes. Such a sample could provide a sufficient number of 

vehicles for analysis of several technologies – whether or not those technologies are common in 

the fleet. We recommend the stratified, random approach for the main study. The question then 

becomes, “What Basic Data variables should be used for stratifying the sample?” 

The stratification variables must be known for vehicle candidates early in the sample 

creation process because these factors would be used to select vehicles from the eligible vehicle 

pool for inclusion in the sample. Any of the Basic Data variables listed in Table 3-1 could be 

determined for an individual vehicle from information obtained from the vehicle owner. 

However, given that fuel economy is the main focus of the main study, sample stratification 

based on Basic Data variables that are more closely related to fuel economy is preferred.  
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For this pilot study we have considered two alternatives for sample stratification. Section 

3.2.1 describes Stratification Plan 1, which would estimate U.S. fleet fuel consumption and CO2 

production with optimum precision. That plan uses propulsion system, FEEL composite MPG, 

and annual miles driven as the stratification variables, which are designated as S1 in the third 

column of Table 3-1. Section 3.2.2 describes Stratification Plan 2, which would provide a dataset 

that could be used to quantify the effects of major fuel-economy-influencing factors for a wide 

variety of technologies. That plan uses propulsion system, FEEL highway MPG, and FEEL 

city/highway ratio as the stratification variables, which are designated as S2 in the third column 

of Table 3-1. Other alternative stratification plans could certainly be designed for the main study. 

The type of propulsion system and the FEEL values can be determined from the vehicle’s 

VIN and information from fueleconomy.gov. The annual miles driven can be estimated from an 

initial interview with the vehicle owner.  

Fleet Representation Candidates – Besides selecting vehicles for the sample according 

to stratification variables, having the sample, as a whole, represent the U.S. fleet’s operating 

environment has advantages. In particular, if the sample proportionally represented the U.S. fleet 

in terms of fleet operating environment characteristics, then the second-by-second operating data 

obtained from the dataloggers would characterize the operating environment of the U.S. fleet – 

something that may not be currently known. Another benefit of proportional sampling with 

respect to fleet representation variables is that, as described below, it helps ensure that a sample 

that is highly skewed with respect to one of the fleet representation variables would not 

inadvertently occur. 

Accordingly, another subset of Basic Data variables, which are independent of the 

stratification candidate variables, can be selected to define the characteristics of the U.S. fleet. 

For discussion purposes, we have selected the eleven variables designated in the fourth column 

of Table 3-1 by R. Their values can be determined early in the vehicle selection process for 

vehicle sample candidates using information provided by the owner including zip code, VIN, and 

driver demographics. Table 3-2 shows sources that can be used to estimate the values or 

distributions of the U.S. fleet.  

In the usual application of the stratified, random technique, vehicles within each of the 

combinations of stratification variables would be selected randomly. However, because of 

statistical fluctuations always present during random sampling, just selecting vehicles randomly 

within each stratum will not ensure that the overall sample will have characteristics proportional 
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to those of the U.S. fleet.14 One possible approach is first to select vehicles randomly within each 

of the combinations of stratification variables and then to adjust the set of vehicles selected such 

that the values for the 11 representation variables of the sample matches those of the U.S. fleet. 

The adjustment would be made by dropping vehicles from the initial set and replacing them with 

vehicles from the eligible pool until the representative properties of the set matches the 

representative properties of the U.S. fleet. The resulting sample would therefore not be strictly a 

random sample, but its creation would have had an element of randomness. 

Table 3-2.  Information Sources for U.S. Representative Candidate Variables 

Factor  
Type 

Factor Estimated U.S. Fleet Characteristics 

Vehicle 

Vehicle age MOVES defaults 
Car/Truck MOVES defaults 
Transmission type Inspection/Maintenance data: Transmission Type 
Manufacturer Registration data 

Usage Total accumulated miles Inspection/Maintenance data 

Driver 
Driver age 2009 FHWA HHTS: Driver Age 
Socio-economics 2009 FHWA HHTS: Demographics 
Driver gender 2009 FHWA HHTS: Driver Gender 

Geography 
Altitude of Base Location 2010 Census: Zip → Altitude 
Precipitation, climatic 2010 Census: Zip → Precipitation Distribution 
Ambient Temperature, climatic 2010 Census: Zip → Temperature Distribution 

 
Several of the 11 fleet representation candidate variables benefit from additional 

discussion. Total accumulated miles is a measure of the accumulated wear and tear on the 

vehicle. In general, we expect that fuel economy will eventually decrease as a vehicle 

accumulates a large amount of mileage, due to malfunctions and wear and tear. However, at the 

beginning of a vehicle’s life, mileage accumulation will reduce friction in the engine, 

transmission, drivetrain, and tires, which will produce gradual improvements in fuel economy 

until malfunctions start to occur and the tires are replaced. The datalogger would record mileage 

accumulated during instrumentation, which would be used with owner interview information to 

determine total accumulated miles, annual miles driven, and new-vehicle break-in. 

Because the fuel economy tendency for a given year, make, model, and engine 

combination would already be present in the FEEL MPG values, make and model are not being 

proposed for inclusion in the sampling design for fleet representation variables. On the other 

                                                 
14 As an example of how statistical fluctuations can produce non-proportionate samples from a random process, 
consider flipping a coin. The probability of getting heads for a single flip is 0.5. The probability of getting 5 heads 
when the coin is flipped 10 times, which is the proportionate result, is only 0.246. Thus, a non-proportionate result 
will be obtained more than 75% of the time for this process. 
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hand, the vehicle manufacturer (e.g., GM, Ford, Chrysler, Japan, Europe categories) could be 

included in the sampling design simply to ensure sampling is appropriately distributed among 

manufacturers. 

Whether a vehicle is a car or a truck can have an influence on fuel economy since, taken 

as groups, cars and trucks have different fuel economies. However, just as for make and model, 

the FEEL MPG values already contain the tendency of trucks and cars to have different fuel 

economies. Just as for vehicle manufacturer, Car/Truck could be included as a fleet 

representative variable simply to ensure that sampling is appropriately distributed among vehicle 

types. 

Other Basic Data Candidates – The fifth column of Table 3-1 indicates with an O the 

variables that have been designated as Other Basic Data candidates. In general, Other Basic Data 

variables are Basic Data variables that have not been used to stratify the sample or to ensure that 

the sample is representative of the U.S. fleet. Nevertheless, the values of Other Basic Data 

variables are important to record because they are not generally recorded by the dataloggers 

installed on the instrumented vehicles. In the particular variable assignments envisioned by Table 

3-1, the Other Basic Data variables benefit from some explanation.  

Vehicle curb weight clearly has an effect on fuel economy. However, FEEL Composite 

value, which is designated for Stratification Plan 1, and FEEL Highway MPG and FEEL 

City/Highway ratio, which are designated for Stratification Plan 2, contain the influence of 

vehicle weight in their values. Therefore, the additional use of vehicle weight for those plans 

would be redundant. Similarly, the effects of vehicle make and model are also included in the 

FEEL values. In addition, their possible use as fleet representative candidates is not practical 

given the large number of makes and models in the U.S. fleet. 

The new-vehicle break-in variable is one variable that would be determined by the 

second-by-second data by tracking odometer reading for newly manufactured vehicles in the 

sample. 

Tire age is an example of a variable that has an influence on a vehicle’s fuel economy but 

that would be difficult to use to stratify the sample or to ensure its fleet-representativeness. Given 

all of the many variables that are expected to have larger influences on fuel economy, tire age 

could be assigned to the Other Basic Data category. Nevertheless, owners of participating 

vehicles should be requested to provide receipts of any new tire purchases so that the effect of 

the new tires on fuel economy might be determined during data analysis. 
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3.2 Alternatives for Stratifying the Sample 

To demonstrate approaches for creating a stratified sample, two alternatives for 

stratifying the vehicle sample are discussed below. The first alternative, discussed in Section 

3.2.1, has the goal of selecting an optimally stratified sample that would obtain the minimum 

uncertainty in the volume of fuel used per U.S. light-duty vehicle per year. The second 

alternative, discussed in Section 3.2.2, has the goal of generating a dataset that could be used to 

determine the size of the influences of various factors on the fuel economies of vehicles that have 

a wide range of fuel economy tendencies.  

3.2.1 Stratification Plan 1 – Measuring Total Fuel Consumption of the U.S. Light-
Duty Fleet: Propulsion System, FEEL Composite, Annual Distance Driven 

This first alternative for stratification of the vehicle sample focuses on creating a dataset 

that can be used to quantify the annual fuel consumption and CO2 emissions of the national fleet 

with optimum precision. An estimate of the fleet’s annual fuel consumption could be made from 

the FEEL Composite values of vehicles in the fleet; however, since the each vehicle’s actual in-

use fuel economy depends on the vehicle’s operation and operating environment, a calculation 

based just on FEEL Composite values may be biased. A quantification of the influences of 

various factors on the fuel economies of a wide range of vehicle technologies and fuel economy 

tendencies could improve fleet estimates of fuel consumption and thereby CO2 emissions.  

Optimal stratified sampling can be used to determine the structure of an “efficient” 

sample set. In this case, the goal would be to minimize the uncertainty in an estimate of the mean 

fuel consumption for the average vehicle in the national fleet. The techniques for generating an 

optimized stratified sample are discussed in Appendix A. Using those techniques, we present 

Table 3-3, which demonstrates estimating the uncertainty in the fuel consumption of the average 

fleet vehicle for a given sample size. Because this calculation is a demonstration, we have used 

entirely artificial values in the calculation. The results that appear here should not be used for 

designing the actual sample for the full-scale project.  
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Table 3-3.  Demonstration Calculations for Sample Structure Determination for Optimal Stratification 

A B C D E F G H I J K L M N 
 Definition of Strata Fraction of Fleet in Strata Characteristics of Fleet Operation Sample Structure Calcs Population Calcs 

Stratum 
A|B 

Number 

 
 

Stratum A 
based on 

FEEL 
Composite 
(miles per 

gallon) 

 
 

Stratum B 
based on 
Annual 
Miles 

Driven 
(thousands 
of miles) 

 
 

Fraction 
of 

Population 
in Stratum 
A: FEEL 

Composite 
Group 

 
 

Fraction 
of 

Population 
in Stratum 
B: Annual 

Miles 
Driven 
Group 

Wh 

 
Fraction 

of 
Population 
in Stratum 

A|B 

 
 

Mean 
FEEL 

Composite 
MPG 

 
 

Mean 
Annual 
Miles 

Driven 

xbar 
 

Mean 
Gallons 
per year 

sh 

 
StdDev 

of 
Gallons 
per year
(assume 
50% of 
xbar) 

Wh*sh nh 

 
Number of 

Sample 
Vehicles 

Allocated to 
each Stratum 

Wh*xbar (Wh*sh)2/nh 

1 <15 <5 0.1 0.1 0.01 12 4000 333 167 2 0.5 3 6.1 
2 <15 5 to 25 0.1 0.7 0.07 12 13000 1083 542 38 10.3 76 139.6 
3 <15 >25 0.1 0.2 0.02 12 30000 2500 1250 25 6.8 50 92.0 
4 15 to 25 <5 0.6 0.1 0.06 20 4000 200 100 6 1.6 12 22.1 
5 15 to 25 5 to 25 0.6 0.7 0.42 20 13000 650 325 137 37.1 273 502.5 
6 15 to 25 >25 0.6 0.2 0.12 20 30000 1500 750 90 24.4 180 331.3 
7 25 to 35 <5 0.2 0.1 0.02 30 4000 133 67 1 0.4 3 4.9 
8 25 to 35 5 to 25 0.2 0.7 0.14 30 13000 433 217 30 8.2 61 111.7 
9 25 to 35 >25 0.2 0.2 0.04 30 30000 1000 500 20 5.4 40 73.6 

10 >35 <5 0.1 0.1 0.01 40 4000 100 50 1 0.1 1 1.8 
11 >35 5 to 25 0.1 0.7 0.07 40 13000 325 163 11 3.1 23 41.9 
12 >35 >25 0.1 0.2 0.02 40 30000 750 375 8 2.0 15 27.6 
              

           Sample Size: 

Population 
Mean 

Gallons 
per Year: 

SD of 
Population 

Mean 
Gallons per 

Year: 
           100 736 37 

             

Coefficient  
of 

Variation: 
             5.00% 
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Select stratifying variables – The discussion surrounding Tables 2-2 and 3-1 focused on 

identifying candidate variables for the vehicle sample. In Table 3-1, five variables were 

designated as candidates for sample stratification. For a stratification design to minimize the 

uncertainty in the average light-duty fleet vehicle annual fuel consumption, the following 

variables, which were indicated with S1 in the third column of Table 3-1, can be chosen: 

 Propulsion System – This categorical variable has values of PFI, GDI, hybrid, and 
diesel. It should be used as a stratification variable because different propulsion 
systems can respond differently to fuel economy factors. 
 

 FEEL Composite value – This variable may be the current best single value that 
estimates average fuel economy. It can be looked up in fueleconomy.gov based on 
model year, make, model, and engine. 
 

 Annual Miles Driven – The value of this value can be estimated by the vehicle 
owner. The FEEL Composite MPG multiplied by the Annual Miles Driven 
provides an estimate of the volume of fuel used by a vehicle that is a candidate for 
the vehicle sample. 
 

The U.S. fleet’s proportions of the three stratification variables need to be determined to 

guide the stratification. As shown in Table 3-4, the FEEL Composite values of vehicles in the 

national fleet can be obtained by matching vehicle model year, make, and model for several sets 

of state registration data with composite values reported in fueleconomy.gov. The distribution of 

annual miles driven for the U.S. fleet cannot be obtained from MOVES. MOVES contains only 

the average annual miles driven as a function of vehicle age. However, an analysis of odometer 

readings from I/M programs can provide an estimate of the distribution of annual miles driven.  

Table 3-4.  Information Sources for the Vehicle Sample for Stratification 1 

Factor 
Sources of Information for: 

Sample Stratification/De-Stratification Sample Vehicle Selection 
Propulsion System Registration data + VIN Survey: VIN 
FEEL Composite MPG Registration data + fueleconomy.gov Survey info + fueleconomy.gov 
Annual miles driven Inspection/Maintenance data Survey: MilesDriven 
 

A separate stratification design would be desired for each of the Propulsion Systems. As 

shown in Table 3-4, Propulsion System can be determined on a sample of registration data from 

several states to determine the fraction of propulsion systems that are present in the U.S. fleet. 

However, based on the low fractions of non-PFI vehicles in the 2013 calendar year fleet as 

estimated in Section 2.1, it may be necessary to target almost all of the willing-to-participate 

drivers of diesel, gasoline direct injection, and hybrids for instrumentation in order to instrument 
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a sufficient number of those technologies regardless of FEEL Composite value or annual miles 

driven. Thus, the demonstration calculation presented below is intended to be a simulated 

calculation for the only PFI vehicles.  

Table 3-3 shows how a stratified sample that minimizes the uncertainty in annual fuel 

consumption could be designed for PFI vehicles. Columns B and C show the two types of strata 

that could be used to define 12 strata for the sample set. Column B shows Stratum A which is 

based on the FEEL Composite value of a vehicle. These values can be obtained from 

www.fueleconomy.gov. Column C shows the Stratum B values of annual miles driven as 

obtained from the survey of vehicle owners. Together, Stratum A and Stratum B create 12 

different strata for the PFI vehicles as shown by the 12 identifiers in Column A. Column D 

shows the (artificial15) fraction of the population in the different MPG groups. Column E shows 

the (artificial16) fraction of the population in the three different annual-miles-driven groups. 

Column F, which is produced by the product of Column D and Column E, gives an estimate of 

the (artificial) fraction of the population in all 12 strata. The values in Column F sum to one. 

Column G gives the (artificial17) average FEEL Composite values for each of the 12 strata. 

Column H gives the (artificial18) average annual miles driven for each of the Stratum B values. 

Column I, which is the (artificial19) average gallons per year used by vehicles in each of the 12 

strata, is calculated in Table 3-3 by dividing Column H by Column G. Column J is the 

(artificial20) standard deviation of the mean values in Column I. For this demonstration, we have 

simply assumed that the standard deviations are 50% of the means in Column I.  

There are at least two contributions to the standard deviations in Column J. The first 

contribution is the variability among the FEEL Composite values of vehicles of different 

descriptions (year, make, model, engine) that are in the same A|B stratum. The other contribution 

to the standard deviations is the variability of the actual fuel economy among vehicles of the 

same description (year, make, model, engine) and in the same A|B stratum as a consequence of 

                                                 
15 Better values for these entries could be determined by application of the fueleconomy.gov values to a registration 
dataset.  
16 Better estimates of these values could be obtained from a careful analysis of inspection/maintenance odometer 
data. 
17 More accurate values for this column could be obtained using fueleconomy.gov and state registration datasets.  
18 More accurate values for these annual miles driven values could be obtained for real vehicles by considering an 
inspection/maintenance dataset. Because very few of the very newest vehicles participate in inspection/maintenance 
programs, the mean annual miles driven for the newest vehicles would have to be estimated. 
19 More accurate values could be obtained by dividing the annual miles driven for individual vehicles in an I/M 
dataset by their FEEL Composite values and then taking the mean.  
20 These standard deviations could be estimated more accurately by propagating the errors within each of the 12 
strata for Column G with the errors for each of the 12 strata in Column H. Even better values could be obtained 
using the variabilities in the annual fuel consumption estimated for vehicles in an inspection/maintenance dataset. 
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different vehicle operation caused by differences in operating environment and driving 

characteristics. Fueleconomy.gov can be used to determine the variability among vehicles of 

different descriptions to arrive at an estimate of the first variability contribution. 

Fueleconomy.gov also has self-reported average fuel economies by drivers of vehicles. However, 

while these variabilities could be used to estimate the second portion, we suspect that these 

variabilities are much narrower than the true distribution of average fuel economies. This is a 

consequence of the likelihood that drivers of vehicles are more likely to self-report high fuel 

economies over low fuel economies because of pride. Fueleconomy.gov self-reported fuel 

economies can be used to estimate the dependence of the variability of average reported fuel 

economies on the composite fuel economy values. Then, based on those trends, the variability of 

average reported fuel economies may need to be inflated to correct for self-reporting bias. 

Columns K and L show the results of the sample structure calculations for a desired 

sample size of 100 vehicles and follow the equations given in Appendix A. Of particular interest 

are the results shown in Column L which gives the number of vehicles in each of the 12 strata to 

produce a minimum in the uncertainty of the fuel consumption of the average vehicle in the fleet. 

There are basically two contributions to the number of vehicles shown for each stratum in 

Column L. If the fraction of the fleet for a given stratum is small (Column F), then the tendency 

is for the number of vehicles in the sample to be small since a small fraction of the fleet would 

not have a large influence on the overall amount of fuel consumed by the fleet. The second 

contribution is the variability of the amount of fuel used in each stratum. This is given in Column 

J and is related to the average fuel economy and average annual miles driven in each stratum. 

Because of these relationships, more vehicles are allocated to strata that represent larger fleet 

fractions, vehicles with lower fuel economies, and vehicles that drive more miles per year – all in 

an effort to minimize the uncertainty in the fuel consumption of the average fleet vehicle. 

Examination of the counts of vehicles in Column L shows this trend is present. 

Vehicles would be selected from the pool of eligible vehicles so that the required 

numbers of vehicles as defined by the allocations in Column L are met. Table 3-4 gives the 

sources of information that would be used to ensure that each vehicle is placed in the proper 

stratum. Column L also shows that for several of the 12 strata, the number of vehicles is less than 

one. In these cases, clearly at least one vehicle would need to be sampled in each stratum. 

However, our experience indicates that it may be prudent to sample at least five vehicles in each 

stratum just so that an occasional wild result on the sole vehicle representing a stratum does not 

unduly influence the overall average fuel consumption estimated for the fleet. 
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Table 3-3 also shows the projected results in Columns M and N if the sample structure in 

Column L were applied to the information in all of the earlier columns. The overall results are 

given at the bottoms of Columns M and N in the boxes. The results show that the population 

mean of 736 gallons per year has an uncertainty (standard deviation) of 37 gallons per year, 

which is a coefficient of variation of 5%. This coefficient of variation is the lowest possible 

coefficient of variation for a sample size of 100 port-fuel-injection vehicles given all of the 

(artificial) values in Table 3-3.  

Sample size effects – The coefficient of variation is inversely proportional to the square 

root of the sample size. Therefore, a sample size of 400 would produce an expected coefficient of 

variation of 2.5%. Increased sample sizes reduce the uncertainty in the population mean gallons 

per year by sampling more vehicles in each of the 12 strata and, thereby, reducing the 

variabilities for the averages of each stratum. 

Figure 3-1 provides a visual indication of the influence of sample size on the uncertainty 

in the average annual fuel consumption for this particular stratified binning structure shown in 

Table 3-3. Keep in mind that the values used in Table 3-3 are artificial, and therefore Figure 3-1 

should not be used to choose a sample size for the main study.  

The calculations and structure of the vehicle sample, as presented in Table 3-3, can be 

considered as a beginning point for designing a sample for the main study. By using the 

spreadsheet from which this table was constructed, the effects of changing various quantities in 

the table on the population mean gallons per year and its uncertainty can be examined. For 

example, the spreadsheet clearly shows that moderately increasing the number of vehicles in 

strata that have a small number of vehicles in Column L produces only a tiny reduction in the 

coefficient of variation. 

De-stratifying the results – Once all of the measurements on the vehicles in the sample 

have been taken, the results can be weighted to reflect the expected trends in the national fleet. 

Table 3-4 provides guidance on information sources for de-stratification, which are the same 

sources that were used for creation of the stratified design. De-stratification would strictly apply 

only to the three stratification variables: propulsion system, FEEL Composite value, and annual 

miles driven unless some of the eleven fleet representative variables have also been stratified. 
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Figure 3-1.21  Effect of Sample Size on Relative Uncertainty  
of the Sample Design Shown in Table 3-3  

 
 

3.2.2 Stratification Plan 2 – Quantifying Influences on Instantaneous Fuel 
Economy: Propulsion System, FEEL Highway MPG, FEEL City/Highway 

This second alternative for stratification of the vehicle sample focuses on creating a 

dataset that can be used to quantify the influences of various factors on the fuel economies of a 

wide range of vehicle technologies and fuel economy tendencies. With that goal in mind, the 

development of the vehicle sample considers the number of vehicles in the sample set and the 

types of vehicles that should be allocated to different strata in the sample set structure. For an 

individual vehicle, an analysis of the second-by-second fuel economy data would estimate the 

coefficients in the following equation which expresses the fuel economy of the vehicle in terms 

of a Taylor series expansion about reference values for each of the factors that influences the fuel 

economy: 

FE  = FE° + (∂FE/∂x1)*(x1-x1°) + (∂FE/∂x2)*(x2-x2°) + …  Equation 1 
 

                                                 
21 C:\Documents and Settings\Tdefries\My Documents\ICCT Pilot\SamplSizeEffects.xlsx 
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The superscript ° denotes values at reference conditions. The choice of reference 

conditions, which is arbitrary, might be chosen near the most common operating conditions in 

the dataset. FE° denotes the fuel economy at reference conditions. xi° denotes the reference-

condition value of independent factors. The partial derivative ∂FE/∂xi is a coefficient that 

estimates the influence of the independent factor xi on the in-use FE. 

The coefficients for some fuel economy factors may have approximately the same values 

across all vehicles while the coefficients for other fuel economy factors may be vehicle-

dependent or dependent on the fuel economy tendency of the vehicle which may be 

approximated by the FEEL Composite value and the FEEL City/Highway ratio. Thus, to have a 

chance of determining the variety of influences of fuel economy factors on the fuel economies of 

different types of vehicles, a wide variety of vehicle technologies and fuel economy tendencies 

would need to be in the vehicle sample. 

In this situation, creating an optimal stratified random sample set, as was used for 

Stratification Plan 1, may not be appropriate. A different approach can be used. 

Select stratifying variables – A stratification design that covers a wide range of 

technologies and fuel economy tendencies can be made up of the following variables, which 

were indicated with S2 in the third column of Table 3-1: 

 Propulsion System – This categorical variable has values of PFI, GDI, hybrid, and 
diesel. It should be used as a stratification variable because different propulsion 
systems can respond differently to fuel economy factors. Of course, for the main 
study the number of propulsion system categories can be reduced or expanded, 
depending on desired analyses of specific technologies (such as turbocharging and 
automated manual transmissions). 
 

 FEEL Highway MPG – This variable is currently the best single value that 
estimates the high fuel economy potential of the vehicle under relatively steady-
state operating conditions. Factors that would produce relatively short term 
deviations in fuel economy would deviate from a value near this FEEL Highway 
value. 
 

 FEEL CityMPG/HighwayMPG ratio22– As discussed in Section 2, this ratio will 
be associated with the fuel economy effects of low speed, high acceleration, and 
road grade relative to the FEEL Highway value. This ratio will also be related to 
powertrain design and to the power/weight ratio of the vehicle. 

                                                 
22 The FEEL City/Highway ratio is a better choice for a stratification variable than FEEL City MPG in this situation 
because the ratio is a measure of the effectiveness of strategies that strive to provide high fuel economies under high 
load and transient operating conditions and a measure that is independent of the overall fuel economy of the vehicle. 
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A sample design such as the one shown in Table 3-5 can be used to create a vehicle set 

with the expected data analysis in mind. The table has a separate sub-table for each of the 

propulsion systems and each sub-table has 20 bins that are combinations of FEEL Highway 

value and FEEL City/Highway ratio. The number of bins for each propulsion system and the 

definition of each of the combination bins are subject to change as further information about the 

distribution of vehicles in the U .S. fleet is obtained.  

The total number of vehicles called for by the structure in Table 3-5 is 260 vehicles. 

These vehicles have been allocated with an equal number to each of the 20 bins within 

propulsion system type. The reason for this is that the goal of the design is to cover a full range 

of fuel economy tendencies within each propulsion system type. Thus, the strategy for 

Stratification Plan 2 is quite unlike for Stratification Plan 1, which was designed to minimize an 

uncertainty on a measured fleet quantity. For Stratification Plan 2, the goal is merely to ensure 

that a wide variety of technologies as defined by Propulsion System, FEEL Highway MPG, and 

FEEL City/Highway ratio are being instrumented so that the analysis of the second-by-second 

data will be able to reveal the dependence of the fuel economies of those technologies on 

changes in vehicle operating conditions. Accordingly, the number of vehicles allocated to 

Propulsion System, FEEL Highway MPG, or FEEL City/Highway ratio strata is not calculated 

based on variances of any quantities as it was for the strata for Stratification Plan 1. Instead, 

vehicles are allocated to the strata as equally as possible for a given sample size. 

The number of vehicles to be instrumented for each of the Propulsion Systems is tied to 

the fleet’s vehicle fraction in each of the Propulsion Systems and to the methods used to recruit 

vehicles, a vision of which is discussed in Section 4.2 below. Based on that analysis, the number 

of vehicles targeted in the Propulsion System strata for PFI, GDI, hybrid, and diesel vehicles 

could be 160, 60, 20, and 20, respectively. The goal is to make the allocations sparser in PFIs 

(61%) and richer in GDIs, hybrids, and diesels (23%, 8%, and 8%) than the estimated fractions 

of PFIs, GDIs, hybrids, and diesels in the 2013 fleet (92%, 5%, 2%, 1%) so that the sample will 

contain an adequate number of vehicles of all four technologies to support analyses of the effects 

of operating environment on fuel economy of all technologies.  

Vehicles would be selected from the pool of eligible vehicles so that the required 

numbers of vehicles as defined by the allocations in Table 3-5 are met. Table 3-6 gives the 

sources of information that would be used to ensure that each vehicle is placed in the proper 

stratum. 
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Table 3-5.  Vehicle Sample Structure for Stratification 2 

PFI Vehicle Stratification  GDI Vehicle Stratification 

FEEL Highway 
(mpg) 

FEEL City 
FEEL Highway 

(mpg/mpg) 

PFI 
Vehicles 

 
FEEL Highway

(mpg) 

FEEL City 
FEEL Highway 

(mpg/mpg) 

GDI 
Vehicles 

≤ 16 

< 0.66 8   

≤ 19 

< 0.64 3 
0.66 to 0.72 8   0.64 to 0.69 3 
0.72 to 0.80 8   0.69 to 0.75 3 

> 0.80 8   > 0.75 3 

17 to 21 

< 0.66 8   

20 to 24 

< 0.64 3 
0.66 to 0.72 8   0.64 to 0.69 3 
0.72 to 0.80 8   0.69 to 0.75 3 

> 0.80 8   > 0.75 3 

22 to 25 

< 0.66 8   

25 to 28 

< 0.64 3 
0.66 to 0.72 8   0.64 to 0.69 3 
0.72 to 0.80 8   0.69 to 0.75 3 

> 0.80 8   > 0.75 3 

26 to 31 

< 0.66 8   

29 to 33 

< 0.64 3 
0.66 to 0.72 8   0.64 to 0.69 3 
0.72 to 0.80 8   0.69 to 0.75 3 

> 0.80 8   > 0.75 3 

≥ 32 

< 0.66 8   

≥ 34 

< 0.64 3 
0.66 to 0.72 8   0.64 to 0.69 3 
0.72 to 0.80 8   0.69 to 0.75 3 

> 0.80 8   > 0.75 3 
       

Hybrid Vehicle Stratification  Diesel Vehicle Stratification 

FEEL Highway 
(mpg) 

FEEL City 
FEEL Highway 

(mpg/mpg) 

Hybrid
Vehicles 

 
FEEL Highway

(mpg) 

FEEL City 
FEEL Highway 

(mpg/mpg) 

Diesel 
Vehicles 

≤ 21 

< 0.79 1  

≤ 18 

< 0.69 1 
0.79 to 0.94 1  0.69 to 0.74 1 
0.94 to 1.09 1  0.74 to 0.80 1 

> 1.09 1  > 0.80 1 

22 to 29 

< 0.79 1  

19 to 26 

< 0.69 1 
0.79 to 0.94 1  0.69 to 0.74 1 
0.94 to 1.09 1  0.74 to 0.80 1 

> 1.09 1  > 0.80 1 

30 to 37 

< 0.79 1  

27 to 35 

< 0.69 1 
0.79 to 0.94 1  0.69 to 0.74 1 
0.94 to 1.09 1  0.74 to 0.80 1 

> 1.09 1  > 0.80 1 

38 to 53 

< 0.79 1  

36 to 42 

< 0.69 1 
0.79 to 0.94 1  0.69 to 0.74 1 
0.94 to 1.09 1  0.74 to 0.80 1 

> 1.09 1  > 0.80 1 

≥ 54 

< 0.79 1  

≥ 43 

< 0.69 1 
0.79 to 0.94 1  0.69 to 0.74 1 
0.94 to 1.09 1  0.74 to 0.80 1 

> 1.09 1  > 0.80 1 
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Table 3-6.  Information Sources for the Vehicle Sample for Stratification 2 

Factor 
Sources of Information for: 

Sample De-Stratification Sample Vehicle Selection 
Propulsion System Registration data + VIN Survey: VIN 
FEEL Highway MPG Registration data + fueleconomy.gov Survey info + fueleconomy.gov 
FEEL City/Highway ratio Registration data + fueleconomy.gov Survey info + fueleconomy.gov 
 

Sample size effects – In this sample design, increasing the number of vehicles assigned 

to each of the stratification bins provides a larger number of vehicles for which the fuel economy 

factor coefficients (the ∂FE/∂xi in Equation 1) can be quantified.  

The analysis of the second-by-second fuel economy of a single vehicle would produce a 

single estimate of a coefficient with an uncertainty for that estimate for each different fuel 

economy factor. Similar analyses on all of the vehicles in the dataset would produce the same 

sort of results. Thus, for a given fuel economy factor, for example, road grade, the analyses 

would produce an estimate of the coefficient from each of the vehicles in the dataset and, 

thereby, create a distribution of the coefficients for each fuel economy factor. Increasing the 

number of vehicles in the dataset would more clearly define the distribution of coefficients for 

each factor and also provide an opportunity to perform analyses that determine why the 

coefficients for each factor are different for different vehicles. 

If the distribution of coefficients for a given fuel economy factor are sampled from an 

underlying distribution of factors, then increasing the number of vehicles in the sample set better 

defines the underlying distribution. Note that here we are assuming that the underlying values for 

a given fuel economy factor is not a constant but is a distribution and that the goal of the analysis 

is to define the shape of that distribution. One measure of a distribution’s width is the standard 

deviation of the distribution. Increasing the sample size reduces the uncertainty in a standard 

deviation. The X2 statistic describes how the uncertainty in the standard deviation changes with 

changes in sample size. The use of the X2 statistic for this purpose strictly applies only to normal 

distributions. It is not known whether the distribution of coefficients for each of the various fuel 

economy factors is normal. Therefore, we must assume, or otherwise show, that the trend in the 

uncertainty of a standard deviation can be reasonably approximated with the X2 statistic. 

The solid red and green curves in Figure 3-2 show the effect of changing sample size on 

the upper and lower 95% confidence limits of the standard deviation of a normal distribution. 

These theoretical calculations were made using the X2 statistic. The plot shows, for example, that 

for a sample size of 200 vehicles the observed standard deviation of a fuel economy factor would 

be between 91% and 111% of the true value of the standard deviation 95% of the time. The plot 
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shows that as the sample size decreases, the confidence limits of the standard deviation get 

wider, and as the sample size gets larger, the confidence limits get narrower. The figure also 

shows that the effect of sample size on the confidence limits is relatively weak. For example, for 

a sample size of 400 vehicles, the confidence limits are about 94% and 108% of the true value of 

the standard deviation.  

Figure 3-2.23  Effect of Sample Size on Relative Uncertainty  
of the Standard Deviation of a Normal and a TriModal Distribution 

 
 

We wrote a SAS program that simulated the reduced uncertainty in the standard deviation 

of a normal distribution as the number of observations is increased. The results of that simulation 

agreed with the theoretical effect using the X2 statistic, which are shown by the solid red and 

green curves in Figure 3-2. Then, to test the effect for a non-normal distribution, we modified the 

SAS simulation program to use a tri-modal distribution (made up of three normal distributions) 

instead of a normal distribution. The results for the tri-modal distribution are shown with the red 

and green dashed curves in Figure 3-2. For the tri-modal distribution, at a given sample size the 

confidence limits on the standard deviation calculated from the sample is narrower than for the 
                                                 
23 P:\ICCT_FE_Pilot\SampleSize\SimVarUnc_1.sas via C:\Documents and Settings\Tdefries\My Documents\ICCT 
Pilot\SamplSizeEffects_withTriModal.xlsx 
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normal distribution. However, the change in the confidence limits for the tri-modal standard 

deviation changes by about the same relative amount as for the normal standard deviation.  

Thus, we get a sense that whether the underlying distribution of the coefficients for a fuel 

economy factor is normal or not, the trend of decreasing uncertainty as sample size increases is 

similar to the trends seen in Figure 3-2. Figure 3-2 can thereby be used as a method to 

approximately judge the effect on fuel economy factor coefficients for the Stratification 2 

approach. 

Destratifying the results – The results from the Stratification 2 design can be de-

stratified to reflect the expected trends in the national fleet. The vehicle counts in the 

stratification design shown in Table 3-5 were arbitrarily allocated rather than based on a detailed 

analysis of U.S. fleet distributions and variances. Nevertheless, because the results from the 

second-by-second data collection will need to be destratified to avoid a bias that would be 

incurred if the results were used directly, the U.S. fleet’s proportions of the bins of the three 

stratification variables need to be determined to guide the weighting that will used for de-

stratification. The three stratification variables were: Propulsion System, FEEL Highway MPG, 

and FEEL City/Highway ratio. De-stratification needs to consider only these three variables 

unless some of the 11 fleet representative variables have also been stratified. As shown in Table 

3-6 for de-stratification, Propulsion System for the national fleet can be estimated by evaluating 

a sample of registration data from several states. The FEEL Highway values of vehicles in the 

national fleet can be obtained by matching vehicle year, make, and model for several sets of state 

registration data with values reported in fueleconomy.gov for those vehicles. The same can be 

done for the FEEL City/Highway ratios. The result of those determinations would be a weighting 

factor for each of the 80 bins in the vehicle sample structure shown in Table 3-5. Those weights 

would be applied to results obtained for each of the individual vehicles in a given bin. 

3.2.3 Comparing the Two Stratification Methods 

The two alternative stratification plans described in the previous two subsections differ in 

their goals. Those are just two of many possible goals that could be used for producing a 

stratified, random sample of vehicles for the main study.  

The goal of Stratification Plan 1 is to minimize the uncertainty in the average annual fuel 

consumption of a light-duty vehicle. To meet this goal, an optimal stratification plan is called for. 

To minimize the uncertainty in the average annual fuel consumption, Stratification Plan 1 gives 

higher preference to sampling vehicles that 1) dominate the fleet, i.e. those that have middle 

composite FEELs, 2) vehicles that are driven more miles each year since they use more fuel each 
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year, and 3) vehicles that have lower fuel economies since they have a higher fuel consumption 

rate. 

The goal for Stratification Plan 2 is quite different from the goal of Stratification 1. The 

goal in this case is to produce a dataset that can be used to quantify the influence of different 

factors on fuel economy and to determine how fuel economy varies for a variety of vehicle 

technologies under actual, routine use, that is, not on a chassis dynamometer. While the 

conditions under which vehicles are driven can differ greatly from vehicle to vehicle, any 

individual vehicle – regardless of technology – could be exposed to any set of conditions, 

depending on driver behavior, vehicle use, road conditions, road terrain, and weather. On the 

other hand, how the vehicle responds to driving conditions is dependent on the vehicle’s design 

and technology. Thus, the goal of Stratification Plan 2 addresses the response of individual 

vehicles. In this instance, an optimized stratification plan is not called for. Data from every 

vehicle in the sample set – regardless of FEEL or propulsion system – contributes to defining the 

link between driving conditions, vehicle and engine characteristics, driver behavior, and fuel 

economy. More variety in vehicles, engines, and conditions provides more opportunities for 

learning about the influences of various factors on instantaneous fuel economy. Stratification 2 

does not emphasize any particular technology or fuel economy tendency, for example, as 

determined by composite or highway FEEL values. 

Stratification 1 investigates the effects of propulsion system on fuel economy but it does 

not make any particular effort to stratify the effects of technology within a propulsion system on 

fuel economy. For example, the effects of a very advanced hybrid system versus a rudimentary 

hybrid system would only be examined under Stratification 1 design if representatives of those 

two systems would be sampled by chance. On the other hand, Stratification 2 specifically targets 

different technologies within propulsion system by using the ratio of the FEEL City MPG to the 

FEEL Highway MPG. Because this variable is built into the Stratification 2 plan, a variety of 

technologies within propulsion system can almost be guaranteed of being in the vehicle sample 

set.  

In spite of their differences, both Stratification Plan 1 and 2 are stratified, random 

designs. Because each set of vehicles is stratified, the analyses performed on a set must always 

account for the stratification – otherwise, the results of the analyses could be biased.  

3.3 Alternatives for U.S. Representation 

Once the vehicles have been tentatively selected for the instrumented vehicle sample, the 

ability of the vehicle sample to represent the U.S. fleet needs to also be considered. Section 4.2 
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will describe the details of how the recruitment methodology would be used to make adjustments 

in the selection of the vehicles for the sample set to achieve the desired representation of the U.S. 

fleet. This section considers two alternatives for how the sample set can represent the U.S. fleet. 

Both alternatives would consider all of the U.S. fleet representative variables, which are listed in 

Table 3-2.  

3.3.1 Representation 1: Proportionate Representation 

The first option for U.S. fleet representation strives to select vehicles for the vehicle 

sample set such that the sample set mimics the relative proportions of the 11 representative 

variables that describe the U.S. fleet, as described in Table 3-2. We refer to this as proportionate 

representation. 

To produce a sample set that has the same relative proportions of the 11 representative 

variables as the fleet, the distributions of these variables in the U.S. fleet needs to be known 

before the sample is created. Table 3-2 provides a suggested source for determining each of the 

distributions for the 11 factors. The 2010 Census results provide human population counts by zip 

code. By making an assumption that the vehicle population is proportional to the human 

population across zip codes, the altitude, the precipitation distributions, and the temperature 

distribution from climatological data for each zip code can be weighted by human population to 

arrive at an estimate of the national distributions of altitude, precipitation, and ambient 

temperature to which the U.S. fleet is exposed. 

As will be described in Section 4.2, vehicles would be randomly selected, tentatively at 

first, to fill each of the bins in the stratification structure. Next, the zip code where each vehicle 

resides would be used to determine the altitude, precipitation and temperature distributions for 

the tentative vehicle sample set. The distributions for the other eight factors listed in Table 3-2 

would also be determined for the tentative vehicle sample set based on information provided by 

the vehicle owners. If the distributions of the 11 representative variables for the sample set are 

similar to the distributions for the national fleet, then the tentative sample set would become the 

final sample set. If the distributions do not agree, then some vehicles that were initially 

tentatively selected would be replaced by other vehicles from the participant pool until the 

sample set distributions and the national distributions agree. 

3.3.2 Representation 2: Enrichment of Selected Representation Variables 

For this alternative representation, the proportion of one or more representative variables 

of the sample set can be modified to shift the distribution relative to the distribution of the 
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variable in the national fleet. For example, perhaps only 5% of national driving occurs at 

altitudes greater than 5,000 feet. If the sample set vehicles were chosen proportionally to altitude 

category, only about 5% of the vehicles would be instrumented for high altitude driving using 

Representation 1 Method. With the Representation 2 method, the fraction of vehicles in the 

sample set that reside at altitudes greater than 5,000 feet could be increased to perhaps 10%, for 

example. This sort of modification to the distributions of representative variables in the sample 

set relative to the national fleet would result in more data from vehicles under more extreme 

conditions than would be obtained using the proportionate representation. Vehicles representing 

these more extreme values would be included in the sample set at the expense of vehicles 

representing less extreme values of the representative factors. 

The distribution of almost any of the representative variables could be altered using this 

technique. Top candidates for enriched representation would be Vehicle Age: older vehicles, 

Transmission Type: manuals, Total Accumulated Miles: higher mileage vehicles, Driver Age: 

very young and very old drivers, Socio-Economics: drivers from poor households and wealthy 

households, Altitude: high altitudes, and Ambient Temperature: very low and very high 

temperatures. Enriched representation for Car/Truck, Manufacturer, Driver Gender, and 

Precipitation are less desirable candidates because those factors have either a multitude of levels, 

are expected to have small influences on fuel economy, or all levels are expected to be well 

represented without using enriched representation. 

3.3.3 Comparing Two Methods of U.S. Representation 

The U.S. fleet representation characteristics of the vehicle sample would be produced 

through adjustments in conjunction with the selection of vehicles to fill the stratification binning 

structure. Two alternative stratification binning structures were presented in Section 3.2. The 11 

factors listed in Table 3-2 can be used as characteristics of the U.S. fleet. In the previous two 

subsections, alternative slants on the sample sets fleet representation were 1) proportionate 

representation, and 2) enriched representation. Each alternative has a number of advantages and 

disadvantages. 

Development of a sample using proportionate representation is somewhat easier to 

produce then enriched representation. The reason for this is that the balance of representation in 

the sample needs to be produced essentially simultaneously with the assignment of vehicles to 

the different strata in the stratification binning structure. For proportionate representation, a 

random selection of vehicles assigned to each stratification bin would likely lead to an overall 

representation of the entire sample set so that it approximates the national fleet. Some minor 
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adjustments in the vehicles selected for the sample set in individual bins may need to be made to 

ensure that the representation of the sample is proportionate to the national fleet. On the other 

hand, enriched representation – especially if several factors would be enriched – would need to 

be initially produced by using weighting factors for those vehicles that represent the portion of 

each factor that is to be enriched. For example, if older vehicles are to be enriched in the sample 

set, then a random sampling weight greater than one would be assigned to those vehicles so that 

when vehicles were randomly selected, older vehicles would have a greater chance of being 

admitted to the sample set. This technique would work and the weighting factors could be used 

during analysis to destratify the results for the entire sample set with respect to the enhanced 

representative factors.  

With proportionate representation, the data that would be obtained in the main study 

would represent the distribution of values for each of the 11 representative factors. More data 

would be obtained under conditions where the majority of the fleet operates in comparison with 

the extreme conditions. On the other hand, with enriched representation, more data would be 

obtained under extreme conditions relative to the amount of data that would be obtained had 

proportionate representation would be used. Thus there is a tradeoff between gaining more 

information at extreme conditions versus gaining more information at conditions that the 

majority of the fleet is exposed to. 

Because of this tradeoff, an analysis of data on the sample set following proportionate 

representation would reflect the trends experienced by the majority of the fleet. On the other 

hand, an analysis of a sample set produced by enriched representation would contain relatively 

more data at extreme conditions and, therefore, would produce analysis results that are more 

reliable for these extreme conditions while the trends in more common conditions where the 

majority of the fleet operates would be slightly less reliable. 

Another aspect of the influence of representation that needs to be considered is the ease 

of destratifying the results of the main study. If proportionate sampling is used, then the results 

need to be destratified only for the destratification variables. However, if enriched representation 

is used, the results need to be stratified for any of the 11 representation variables that were 

enriched as well as the stratification variables. This adds extra complexity to the destratification 

process. 

The last feature to consider is the effect of the representation alternative on the 

distribution of other fuel economy influencing factors. If proportionate representation is used, 

then the distributions of the following factors in the dataset would be approximately 
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representative of the occurrence of these factors in the U.S. fleet: vehicle acceleration, throttle 

position, vehicle speed, engine warm-up status, A/C compressor status, road grade, altitude, 

wind, precipitation, and ambient temperature. If enriched representation is used, the distributions 

of these factors as measured on the vehicle sample set would be skewed by the enrichment. To 

determine the distribution of these fuel economy influencing factors for the fleet would require 

destratification of the distribution observed in the sample set data using the enrichment 

weighting factors. This could be done but it would involve an additional level of complexity in 

comparison with the distributions obtained with the proportionate representation alternative. 
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4.0 Vehicle Recruitment Methodology and Participant Maintenance 

This section describes a method that could be used to recruit vehicles for a main 

instrumentation study. Section 4.1 describes several alternative sources of candidate vehicles. 

Section 4.2 describes in some detail one method that could be used to recruit vehicles. Section 

4.3 presents several descriptions of recruitment tools that could be used for that method. Section 

4.4 reviews a few alternatives for validating portions of any vehicle recruiting methodology. All 

of the methodologies and tools discussed in Section 4 should be viewed as a way to stimulate 

thought and discussion of techniques for vehicle recruiting. The intent of the discussion is not to 

present a final methodology.  

4.1 Sources of Participant Candidates 

In the fuel economy main study, a set of 1996 and newer light-duty on-road vehicles 

would be instrumented to collect second-by-second data on fuel economy and high temporal 

resolution data on the major factors that affect fuel economy. The vehicles to be instrumented 

need to in some manner represent the distribution of vehicles, driving behaviors, and driving 

conditions that represent the U.S. light-duty fleet. This goal for the sample set implies that the 

sampling method addresses the following two properties: 

 Randomness – Some aspect of randomness needs to be present in the selection of 
individual vehicles. This could mean that either vehicles are selected randomly or 
that stratified, random sampling should be used.  
 

 National Coverage – So that the sample set can represent the U.S. fleet, the 
sample frame from which individual vehicles are sampled should include all light-
duty vehicles in the 50 states and the District of Columbia. Other alternatives are 
also possibilities. For example, vehicles could be selected from the major regions 
of the United States or from representative metropolitan areas and urban areas 
within the United States if they can be shown to be representative of the national 
fleet. 

 
The discussion below presents four alternative sources from which individual vehicles for 

the sample set could be obtained. Each alternative source has different qualities. A summary of 

the advantages and disadvantages of each alternative source will be discussed in Section 4.1.5. 

Estimates of the costs to obtain a given sample set size will be presented in Section 6.1. 
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4.1.1 Source 1: Project Household Survey by a Project Team Company 

In the first alternative a national survey would be conducted to identify individual vehicle 

candidates for instrumentation. NuStats, a team member on this pilot study, has performed many 

of these types of surveys.  

The methodology for developing and performing a project survey could include the 

following steps. 

1. Obtain a list of randomly selected land line and cell phone telephone numbers. 

2. Obtain mailing addresses that correspond to each of the telephone numbers. 

3. Mail a postcard to each of the addresses alerting the resident that they will be 
called to gain their participation in the study. 

4. Conduct a telephone interview with each of the households using a script 
developed specifically for the survey. 

Variations on the above process could also be used. For example, the postcard could 

provide an opportunity for the respondent to answer the survey questions online, and those 

targeted households that do not respond online could be followed up with a telephone interview.  

The purpose of the script is to describe the project to the interviewee, to determine if any 

of the household vehicles is eligible for the study and, if the household would be willing to 

participate,24 to obtain some initial information about the household, drivers, and vehicles. Note 

that at this point an incentive would not be offered in an effort to get the household to agree to 

participate since the project staff would not yet know if any of the household’s vehicles would be 

desired for inclusion in the sample. The telephone script would need to be developed, tested, and 

refined for effectiveness at the beginning of or before the main study. Effectiveness is 

determined by doing cognitive testing in which a draft script is administered one-on-one to a 

small group of individuals, who are unfamiliar with the project. 

Past experience indicates that the willingness-to-participate rate for this type of survey, 

where “cold calls” are made, will be about 5 to 10%. Therefore, approximately 20,000 to 40,000 

interviewee contacts would need to be made to obtain a 2000-vehicle pool of willing participants 

                                                 
24 At this point in communicating with interviewees, the goal is to determine if the interviewee is willing to 
participate. In this pilot report, we strive to make a distinction between willing to participate and agreeing to 
participate. Willing to participate means that interviewees do not outright reject the possibility of participating; 
interviewees would consider participation if a future-offered incentive were acceptable to them. Agreeing to 
participate means that the interviewee was offered an incentive and agrees to participate in the study in return for the 
incentive. 
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from which the final sample set would be chosen. As described in Section 4.2, interviewees who 

are not willing to participate would be “placed” in a non-response pool. Using that pool, an 

analysis could be conducted to compare interviewees who were willing to participate with those 

who were unwilling to participate to determine if a bias existed between those two sets of 

interviewees. 

4.1.2 Source 2: Empanelled Survey by a Surveying Company that Maintains 
Panels 

A second alternative is to use a surveying company that maintains panels of respondents 

for use in conducting surveys for the company’s clients. Such companies conduct a wide variety 

of surveys – not just surveys related to travel. For this source alternative, the surveying company 

would not be a member of the study’s team but would be contracted specifically to conduct a 

survey for the purposes of generating the willing-to-participate pool. Example surveying 

companies include Knowledge Network and SSRS. 

Knowledge Network, for example, maintains two types of panels to answer survey 

questions for clients. Members of the first type of panel, which can be designated as the Pristine 

Panel, are carefully and statistically recruited by Knowledge Network using an address based 

sample that gives all households that receive postal mail a chance to be included. Members of the 

Pristine Panel are selected to meet strict Knowledge Network criteria. By agreeing to be a 

panelist they are given free Internet access and a computer to ensure that even households 

without Internet access are included. They generally serve as panelists for a relatively long 

period of time – often for several years. Knowledge Network collects a wealth of economic, 

social, and demographic data on each of its panelists and the panel itself is representative of 

people in the United States. In addition, the panel is large enough that it can be used to select 

representative sub-populations, for example, Hispanic consumers. During their tenure, members 

of the Pristine Panel are administered many different surveys by Knowledge Network staff for 

the company’s clients. Pristine Panel panelists are compensated for their participation in addition 

to getting free Internet service and possibly a free computer so that they can respond to the 

online surveys. 

The second type of Knowledge Network panel can be designated as the Opt-In Panel. 

The Opt-In Panel has considerably more panelists than the Pristine Panel. However, the panelists 

are less carefully selected and less well characterized than members of the Pristine Panel. Also, 

Opt-In Panel members are compensated less for their services. Anybody can apply to become a 

member of the Opt-In Panel. Then, Knowledge Network selects a subset of applicants for 

empanelment. As with the Pristine Panel, panelists answer survey questions online. Even though 
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the Opt-In Panel is selected with less statistical care then the Pristine Panel, the characteristics of 

the Opt-In Panel are relatively well known since the Knowledge Network has tied the 

characteristics and responses of the Opt-In Panel to those of the Pristine Panel. Weights are 

applied to results from the Opt-In Panel to approximate the results that might have been obtained 

from the Pristine Panel.  

The Pristine Panel is one of the most scientifically rigorously selected probability 

sampling panels in the industry. The scientific rigor of SSRS's panel may be regarded as between 

Knowledge Network’s Opt-In and Pristine Panels. Additionally, the panelist turnover rate for 

SSRS panels is higher than for Knowledge Network panels. 

Knowledge Network panelists are not limited to only answering online surveys. They 

sometimes can physically participate in a survey, for example, for evaluating over the counter 

drugs. Therefore, panelists could be considered as a source of potential participants in the main 

study. 

Because the interviewees for the Knowledge Network or SSRS surveys are already 

impaneled and are accustomed to answering surveys, only one step is required for this alternative 

in comparison with the custom household survey discussed in Section 4.1.1: 

1. Conduct an online survey using a script developed specifically for the main study. 

The purpose of the script would be essentially the same as for the custom household 

survey, that is, to determine if any of the household vehicles is eligible for the main study and, if 

a panelist is willing to participate, to obtain some initial information about the household, 

drivers, and vehicles. One advantage of using a company like Knowledge Network or SSRS, that 

already has existing panels, is that characteristics of each panelist are known from surveys they 

have taken in the past. The prime contractor for the main study would need to work with 

Knowledge Network or SSRS staff to develop the online questions and to evaluate cognitive 

testing results. 

4.1.3 Source 3: Ongoing Household Travel Survey 

The third alternative for a source of main study participants is to collaborate with an 

ongoing household travel survey. Household travel surveys are regularly made by government 

and private organizations. For example, Federal Highway Administration regularly conducts a 

household travel survey. The most recent FHWA household travel survey was taken in 2009. 

However, the interviewees of past household travel surveys are not likely to be available for 

participation in the main study because the surveys generally promise interviewees 
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confidentiality in order to gain cooperation of the interviewee. On the other hand, ongoing 

household travel surveys offer a real possibility for accessing households willing to participate in 

an instrumented vehicle study. Because the household travel survey is ongoing, additional 

candidates for the main study would be obtained every month – thereby providing a continuous 

stream of candidates. 

Acquiring participation candidates for the main study from an ongoing household travel 

survey has several advantages. The groundwork of developing at least part of the survey 

instrument and acquiring random telephone numbers would have already been done for the 

survey. Survey targets who endure the complete telephone survey are likely to be willing main 

study participants because they are apparently interested in travel and providing their travel 

information as demonstrated by their willingness to complete the household travel survey 

interview. 

Another advantage is that an ongoing household travel survey would already be 

collecting information that would be useful to the main study for selection of the participant pool 

from individuals who are willing to participate. For example, the household travel survey could 

already be obtaining household zip code, number of vehicles in the household, and age, gender, 

and annual miles driven by each driver in the household. If the contractor for the main study 

could establish a collaborative relationship with an ongoing national household travel survey, 

only a few questions would need to be added to the end of the existing survey instrument to 

determine, for 1996 and newer vehicles, the vehicle model year, make, and model for each 

vehicle in the household and finally to follow up with a question of whether the household was 

willing to participate in the main instrumentation study. 

4.1.4 Source 4: State Vehicle Registration Databases 

The three alternative sources of participant candidates discussed above all begin with 

conversations with households and vehicle owners. For those alternatives, the descriptions of 

vehicles are obtained by communicating with vehicle owners. Another approach is to target 

vehicles of interest to the study and then to contact their owners to see if they are willing to 

participate. State vehicle registration databases could be used to identify the vehicles for this 

approach. Since vehicle registration databases have vehicle owner names and addresses, the 

owners could be contacted. To generate the same size pool of eligible candidates, many fewer 

contact may need to be made with this approach than the earlier approaches discussed because 

contacts would need to be made only to households that are already known to own vehicles of 
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interest to the study. However, confidentiality of owner information in state registration 

databases becomes an issue. 

In past projects, ERG has obtained snapshots of registration databases from state 

agencies. However, in general, states are quite reluctant to provide VIN and license plate 

information. Obtaining vehicle owner name and address information is even more restricted and 

sometimes requires several levels of approval before that information can be released to an 

outside contractor or even to another agency within the state government. We have obtained such 

information on occasion but only from a handful of states and the time delay in getting the 

information can be long and unpredictable. 

We expect that many vehicle owners will not have a problem being contacted using name 

and address information obtained from registration databases. However, if even a few vehicle 

owners are upset by the release of personal information by the state, those owners could cause 

problems for the project. 

The methodology for using registration database information would include the following 

steps: 

1. Obtain a snapshot of the registration databases from all states or at least from a set 
of states that has been demonstrated to represent the U.S. fleet. 

2. Randomly identify a large set of vehicles within the registration databases that 
would be appropriate for the main study. This would include information obtained 
from VIN decodes so that the propulsion system technologies and overall fuel 
economy tendencies of the vehicles would be known before contacting vehicle 
owners. 

3. Determine owner telephone number from the owner name and address in the 
registration database. 

4. Mail a postcard to each of the addresses alerting the owner that they will be called 
to gain their participation in the study. 

5. Conduct a telephone interview with each of the owners using a script developed 
specifically for the main study. 

Again, variations of the above process could also be considered. For example, the 

postcard could provide an opportunity for the respondent to answer the survey questions online 

and those targeted owners who do not respond online could be followed up with the telephone 

interview.  
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The purpose of the script would be similar to the survey instruments described above 

except that the qualities of the vehicle would already be substantially known. The script would 

be used to gain the cooperation of the vehicle owner in becoming a participant and, if they are 

willing to participate, to obtain initial information about the household and drivers. The 

telephone script would need to be cognitively tested for its effectiveness. 

4.1.5 Comparison of Alternative Sources of Participation Candidates 

This section compares the expected performance of the four alternative sources of 

participant candidates described above with respect to seven attributes that will be important to 

the cost-effective operation of the fuel economy main study. Table 4-1 shows brief notes for each 

of these seven attributes for each of the four alternative sources. In this discussion, the custom 

household survey by a project team company (Source 1) will be called the Project Household 

Travel Survey (Project HHTS), the custom survey by a surveying company that maintains panels 

(Source 2) will be called the Empanelled Survey, the ongoing household travel survey (Source 3) 

will be called the Ongoing HHTS, and the acquisition of lists of vehicle owners from state 

vehicle registration databases (Source 4) will be called the Registration Survey. These terms are 

underlined in the headings of the columns of Table 4-1. 

The relative ranking of the four alternatives for each of the quality attributes is designated 

in the table by the color of the background within each cell. Green represents highest quality, 

yellow represents moderate quality, and red represents lowest quality among the four 

alternatives. Keep in mind that just because an attribute is designated as lowest quality does not 

mean it makes the source alternative unacceptable. In other words, any of the alternative sources 

could be used for the main study. In the discussion below, each of the seven quality attributes is 

considered for each of the four alternative sources.  
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Table 4-1.  Attributes of Sources of Participation Candidates 

Quality Attributes 

Project HHTS:  
Household Survey by a 
Project Team Company 

Empanelled Survey: 
 by a Surveying Company 

that Maintains Panels 

Ongoing HHTS:  
Ongoing Household Travel 

Survey 

Registration Survey:  
State Vehicle Registration 

Databases 

Cost 

Moderately expensive. All 
aspects of conducting the 
survey borne by the main 
study. Low overhead. 

Industry leaders could be 
quite expensive. Panel 
already exists. Cost sharing 
for panel maintenance. 

Probably inexpensive. Just 
adding questions to end of 
existing survey instrument. 
Groundwork already provided by 
survey operator. 

Probably expensive. State 
databases expected to have 
low purchase cost. High labor 
costs to contact 50 states and 
soothe confidentiality. 

Collaboration 

A project member company 
will have travel survey and 
vehicle instrumentation 
experience. 

No benefits from 
collaboration; company 
does the work under a 
contract. 

A survey sponsor that is already 
interested in travel behavior will 
likely also be interested in fuel 
economy trends. 

No expected benefits to each 
state from collaboration with 
the main study. 

Availability of Basic 
Data + Stratification 
Variables 

Must ask for every piece of 
info. May make survey 
instrument longer. 

Much panelist detailed non-
travel info including 
demographics. Perhaps 
some travel info.  

All info is related to travel since 
survey focuses on travel. 

Vehicle info is available, but 
must ask for every piece of 
non-vehicle info. 

Willing-to-Participate 
Rate 

Except for postcard alerts, 
these will be "cold call" 
interviews. Expect low 
willing-to-participate rates. 

Almost all online interviews 
will be completed. Expect 
low willing-to-participate 
rate since panel is not 
focused on travel. 

Expect high willing-to-
participate rates since survey is a 
travel survey. 

Except for postcard alerts, 
these will be "cold call" 
interviews. Expect low 
willing-to-participate rates. 

Timing + Control 

Closest to absolute control 
since timing is controlled by 
the main study contractor. 

Timing subject to surveying 
company schedule. As a 
client, main study contractor 
would have control. 

Info and schedule for the main 
study contractor will be subject 
to the HHTS's sponsor. 

Expect long delays to get 
registration data from states. 
Close to absolute control after 
that. 

Bias 

Small chance of bias since 
the main study contractor 
controls the survey. 

Panelists are well selected, 
but panel has the trained 
respondent problem. 

Small chance of bias since the 
survey should be well designed 
even though main study 
contractor is not the survey's 
primary focus. The design can be 
evaluated by the main study 
contractor. 

Even though main study 
contractor controls which 
vehicles are selected, mild 
chance of bias exists since 
getting registrations from all 
50 states unlikely. 

Participant Retention 
Same survey company used 
for initial screening and 
final empanelment. 

Different survey company 
used for initial screening 
and final empanelment. 

Different survey company used 
for initial screening and final 
empanelment. 

Same survey company used 
for initial screening and final 
empanelment. 
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Cost – The Ongoing HHTS has the advantage of lowest cost. With an Ongoing HHTS, 

the ground work would have already been done by the sponsor. This would include determining 

telephone numbers and addresses and developing the main survey instrument. With the sponsor’s 

cooperation, questions needed by the main study could be added to the end of the existing survey 

instrument to obtain the specific information needed by the main study to screen participant 

candidates and to determine if the interviewee is willing to participate in the main study. The 

Project HHTS would be next higher in cost because all aspects of conducting the survey would 

be borne by the main study. However, since the surveying company would be a member of the 

main study project team, relatively low overhead rates would be available. The Empanelled 

Survey could be quite expensive because the cost for maintaining a long term panel (for 

example, the Knowledge Network Opt-In panel) can be expensive even though they are shared 

by many different clients of the company. Additionally, Knowledge Network is considered an 

industry leader and can be expected to demand a premium price. An advantage of the 

Empanelled Survey is that the panel already exists and therefore those empanelment and 

maintenance costs have already been incurred. The Registration Survey is also expected to be 

expensive – not because the state databases would have a high purchase cost – but because the 

main study project team would incur high costs involved in contacting all 50 states and 

addressing the bureaucratic requirements needed to address the confidentiality issues of releasing 

vehicle owner names and addresses to the main study project team. 

Collaboration – The main study project team and the organization performing the survey 

may benefit from the collaboration during identification of participant candidates. The Ongoing 

HHTS has the advantage here since the sponsor of the Ongoing HHTS is already interested in the 

travel behavior of the survey’s respondents. Accordingly, it is likely that the sponsor would also 

be interested in the fuel economy trends of vehicles in the fleet and the behavior of vehicle 

owners in terms of driving patterns and vehicle usage, which would be obtained in the main 

study. The company performing the survey for the Project HHTS would be a member of the 

project team and would have been selected for the project team because of past experience 

conducting travel surveys and even perhaps performing vehicle instrumentations. Thus, the main 

study would benefit from the experience of the Project HHTS operator. In contrast, the 

Empanelled Survey and the Registration Survey operators gain no particular benefit in terms of 

collaborating with the main study. The Empanelled Survey company performs many types of 

surveys and does not concentrate on travel surveys. The states maintain registration databases but 

are not especially interested in the fuel economies of vehicles. 

Availability of Basic Data and Stratification Variables – The basic data and 

stratification variables would be used to select participants from the willing-to-participate pool, 
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would likely be used during analysis to weight the sample set results to estimate national trends, 

and could become independent variables with respect to measures of fuel economy. A subset of 

the basic data variables and potential stratification variables are particularly important to know 

before selection of participants from the willing-to-participate pool so that the selections can 

actually be made. The variables in this subset include vehicle manufacturer, vehicle make, 

vehicle model, vehicle age, transmission type, total odometer reading, driver age, driver gender, 

socio-economics, and household zip code, as well as potential stratification variables for 

propulsion system and annual miles driven.  

The availability of this data is expected to be best for the Ongoing HHTS since this 

survey is likely already be designed to acquire travel information from the households. That 

information would just need to be supplemented by questions at the end of the survey instrument 

added for the purposes of the main study. The Empanelled Survey would also have additional 

information about the panelists and much of it would be detailed non-travel information 

including demographics that would have been obtained during initial consideration of the 

panelist for the panel. In addition, the results of earlier surveys by other clients may be available. 

These earlier surveys may provide some travel information. The Registration Survey alternative 

would have detailed vehicle information available since the registration databases will have 

typically model year, make, and VIN. However, for the Registration Survey alternative, every 

piece of household and driver information would need to be obtained using an online or 

telephone interview. The Project HHTS alternative has the disadvantage for this attribute since 

every piece of information to be obtained must be requested of the interviewee. 

Willing-to-Participate Rate – The willing-to-participate rate for this discussion is 

regarded as the percentage of respondents who are willing to participate in the main study. 

Respondents who are willing to participate are those who do not outright reject any participation; 

they are willing to consider participation even though no incentive is yet offered. The willing-to-

participate rate is an important first hurdle in the recruiting methodology. Incentives would be 

offered later, but only to those willing-to-participate respondents whose vehicles are desired for 

the sample. Again, the Ongoing HHTS is expected to have the advantage for this attribute since 

the survey has been designed to be a travel survey and, therefore, has a focus similar to the main 

study. Since the Ongoing HHTS respondents would have been selected for travel questioning 

and would have been alerted before the telephone interview, we expect that participation rates as 

high as two-thirds are possible. The Empanelled Survey would use only online interviews but 

because the Empanelled Survey uses a panel that is not focused specifically on travel issues, we 

expect a low willing-to-participate rate in the vicinity of 5 to 10%. Except for postcard alerts, the 
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Project HHTS and Registration Surveys would basically be cold call interviews, and therefore, 

we expect low willing-to-participate rates in the vicinity of 5 to 10%.  

Timing and Control – Timing and control refers to the ability of the main study 

contractor to control the timing and response of the surveying used to identify participation 

candidates early in the project. The advantage here goes to the Project HHTS since the survey 

operator is a member of the project team. All of the survey operator’s activities are designed to 

meet the specific and direct needs of the main study. Thus, the Project HHTS is the closest to 

absolute control that the main study can have over the survey activities. The next best alternative 

is the Empanelled Survey where the surveying company that maintains its own panel would have 

a contract with the project team but not be a member of the team. Still, with the main study 

contractor as a major client, they would still have control over the survey activities. The sponsor 

of the Ongoing HHTS would maintain control of their HHTS since that is the primary purpose of 

that survey. The sponsor might allow questions to be added to the end of their survey instrument 

for use by the main study. Still, the main study’s desire for information and schedule would be 

subservient to the desires of the sponsor of the Ongoing HHTS. Finally, the Registration Survey 

timing could be a problem because of expected long delays to get registration data from the 

states. Nevertheless, once the registration data from the states is obtained, the project team would 

have close to absolute control. 

Bias – For all alternatives, special efforts would be undertaken to minimize the bias in the 

pool of participant candidates produced by each alternative. In spite of this it is possible that 

biases can creep into the pool. Both the Project HHTS and the Ongoing HHTS are expected to 

have small chances of bias because the surveys are either controlled by the main study through 

the team member that performs the survey or would have already been addressed through careful 

sampling by the operator of the Ongoing HHTS. In the case of the Ongoing HHTS, the main 

study team can evaluate the techniques that are used to sample the population to help ensure that 

biases in the pool are minimized. Because it would be difficult to get registration databases from 

all 50 states for the Registration Survey approach, a moderate chance exists for biases in the pool 

generated by that technique. For the Empanelled Survey approach, the maintained panels have 

panelists that are carefully and well selected. However, once a person has been a panelist for 

substantial period of time, they may develop attitudes as a result of the many surveys that they 

have responded to. An evaluation of biases between those who are willing to participate and 

those who are not and between those who agree to participate and those who do not could be 

made by an analysis of the owners in the non-response pool, which will be discussed in Section 

4.2. 
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Participant Retention – Switches in the surveying company are known to be a cause of 

loss of potential participants. When the pool of participant candidates is obtained by the same 

company as is used for the later interviews, which are used to obtain detailed vehicle 

information, the retention of the participant candidates in the final instrumentation pool is 

expected to be higher than if a different survey organization occurs. Therefore, the Project HHTS 

and the Registration Survey have advantages for higher participant retention than the Ongoing 

HHTS and the Empanelled Survey do. However, with appropriate notification to participant 

candidates that the company may change, the disadvantage of changing companies may be 

minimized. 

4.2 Description of Recruitment Methodology 

This section presents one option for recruiting vehicles for the main study. This option is 

based on selected alternatives discussed earlier in this report: the use of an ongoing national 

household travel survey (HHTS) as a source of candidate participants, a stratification structure 

based on propulsion system, fuel economy label Highway value, the ratio of fuel economy label 

City to fuel economy label Highway values, and characteristics of the overall sample that 

proportionally represents the characteristics of drivers and vehicles in the U.S.  

As described in Section 4.1, an ongoing national household travel survey as a source of 

candidate participants is particularly attractive. Such a survey would produce monthly lists of 

willing-to-participate respondents, who were randomly selected across the nation. The steady 

monthly stream of candidates from the HHTS would allow the main study to start slowly, if 

necessary, to “work out the kinks” in the main study’s strategy while always having a fresh pool 

of willing-to-participate respondents who have just recently been interviewed by the HHTS. 

National sampling is desirable so that the full range of driving behaviors and vehicle operating 

environments (weather, altitude, road conditions) would be represented in the sample. Any 

competently designed HHTS will strive to representatively select interviewees. In this situation, 

the role of the main study contractor would be to verify the adequacy of the HHTS techniques – 

not the much larger role of developing the techniques. Because the HHTS is a travel survey, a 

large fraction of the respondents who complete the survey would likely be willing to participate 

in the main study. The sponsor of the HHTS would be likely to collaborate with the main study 

sponsor since they are interested in travel, too. This mutual interest could lead to shared costs 

and shared data. 
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The flow diagram in Figure 4-1 provides an overview of the recruitment and participant 

maintenance methodology. Parallelograms represent owner/vehicle pools and datasets, rectangles 

represent activities by the project team, and gray diamonds represent decision points in the flow.  

For the detailed discussion below, Figure 4-2 is an annotated version of the flow diagram 

that additionally provides estimated percent efficiencies at decision points, counts of the number 

of vehicles in black rectangles for this scenario, and tan squares (labeled 1, 2, 3, 4) that denote 

points where basic data is obtained. The counts in the figure were determined so that at the end 

of the main study, 200 participating vehicles would have generated one year of second-by-

second data. The “upstream” counts were produced by back-calculating from the 200-vehicle 

goal using the following assumed efficiencies25: 

 67% of HHTS interviewees are willing to participate in the main study, 
 

 20% of owners who receive advance notification packages register online, 
 

 62% of owners who receive advance notification packages register by phone 
interview, 
 

 20% of mailed instrumentation packages cannot be installed successfully – even 
with assistance, and 
 

 25% of vehicles with successful installations do not complete a year of data 
collection – even with assistance. 

 
Other assumed efficiencies would, of course, produce different upstream counts. Initial 

results obtained during start-up of the main study could be used to update these efficiency values 

and thereby adjust the counts expected in the work flow. 

The yellow parallelogram in the upper left hand corner of Figure 4-2 indicates that, in this 

scenario, participant candidates would come from a national HHTS that is underway. The 

accumulation of information for Tan Square 1 begins. We assume that the survey would have 

information for the address, telephone number, and zip code for the respondents to that survey. 

This information may not necessarily be the information for the respondent’s residence because 

some people may be interviewed while they are at work.  

 

                                                 
25 The assumed efficiencies are educated guesses based on prior experience that contributors to this pilot study have 
had. Therefore, while these values are used to illustrate the recruitment method, they also represent our best estimate 
of what the actual efficiencies may be. 
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Figure 4-1.  Participant Recruitment Flow Diagram 
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Figure 4-2.  Participant Recruitment Flow Diagram with Annotations 
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The existing HHTS survey would obtain the following information from owners of 3000 

vehicles that were model year 1996 and newer light-duty vehicles: 

 Interview address, interview phone number, interview zip code 
 Urban/rural measure 
 Number of vehicles in household 
 For each responding driver:  

— Age, gender, marital status, race, annual miles driven on any vehicle 
— Type of driver (frequent, sometimes, never) 
— Type of vehicle driven on day of the interview 

 
With the collaboration of the HHTS sponsor, a number of questions would be added at 

the end of the HHTS survey instrument for the fuel economy study. These added questions 

would obtain important information to determine which of the HHTS respondents’ vehicles 

would be good candidates for the main study. Clearly, adding these questions to the HHTS 

survey requires the collaboration of the HHTS sponsor. We expect that the HHTS sponsor would 

be agreeable to adding questions as long as their questions are first and the added questions do 

not increase the survey duration substantially. The first set of additional questions would 

determine (also for Tan Square 1): 

 For all 1996 and newer light-duty vehicles in the household: 
— Year, make, model 
— Is it a diesel? 
— Is it a hybrid? 
— The name of the primary driver of the vehicle. 

 
At this point, the HHTS interviewer would describe briefly the main study and ask the 

interviewee if they would be willing to participate in the main study. Determining willingness to 

participate could easily be done by the HHTS interviewer because the goal is simply to 

determine if the interviewee would even consider participation. A simple description of the 

instrumentation would be read by the interviewer. No incentives would be offered since at the 

time of the HHTS interview it would not be yet known if any of the interviewee’s vehicles would 

be desired by the main study. Determining respondent’s willingness to participate is shown by 

the gray diamond in the first column of Figure 4-2. If they answer “yes,” then the survey would 

get this additional information for Tan Square 2: 

 Name 
 Home address (to mail advanced notification package) 
 Home zip, and 
 Telephone number (for recruiting by telephone). 
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If they answer “No,” then the survey would already have information on vehicle and 

driver that could be used to correct results and evaluate any bias for the non-response. Thus, it is 

key that the question, “Are you willing to participate in the fuel economy study?” be asked after 

all other information has been obtained. 

We expect that about two-thirds of respondents to the HHTS would be willing to 

participate in the main study since they have demonstrated interest in travel by staying with the 

HHTS interviewer. The main study contractor would have to evaluate the techniques used by the 

HHTS to avoid bias via HHTS non-respondents. Thus, at this point 2000 vehicles move on as 

candidates for selection to the Select Targets box while 1000 vehicles move to the black Non-

Response parallelogram at the bottom left of Figure 4-2. 

In the Select Targets box, the vehicles of participants who are willing to be in the project 

and their households would be characterized by the project team. The vehicle would be assigned 

to a propulsion system bin, which would have values of 1) port fuel injection, 2) diesel, 3) 

hybrid, or 4) possible gasoline direct injection, or any other technology categories of interest to 

the main study sponsor. Most owners would know if their vehicle is a diesel or a hybrid, but 

fewer owners would be able to correctly identify their vehicle as port fuel injection vs. gasoline 

direction injection. Therefore, if the respondent said that their vehicle was either a diesel or a 

hybrid, it would be assigned to those propulsion system categories. If the year, make, and model 

of the vehicle corresponds to a year, make and model where gasoline direct injection engines 

were offered by the manufacturer as either standard or as an option, then the vehicle would be 

assigned to the possible gasoline direct injection bin. Otherwise, the vehicle would be assigned to 

port fuel injection. The assignments of vehicles to propulsion bins at this point would be 

tentative and would be firmed up later in the recruitment process based on the vehicle VIN.  

Based on the owner-stated vehicle year, make and model, and fuel economy label values 

looked-up in fueleconomy.gov, each vehicle would be assigned to a Highway MPG bin and to a 

bin of the ratio of City MPG and Highway MPG. The vehicle would also be assigned to a vehicle 

age bin based on the model year, to a manufacturer bin (e.g., GM, Ford, Chrysler, Europe, Asia) 

based on the vehicle’s make, and to a vehicle type bin (e.g., car, truck, SUV,…) based on the 

vehicle’s year, make and model. The gender of the primary driver would be used to assign the 

vehicle to a driver gender bin. The zip code of each respondent would be recorded. Later, the zip 

code would be used to adjust vehicle selection so that the entire set of targeted vehicles has 

distributions of altitude, precipitation, and ambient temperatures that approximate the 

distributions of those quantities for the U.S. population.  
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At this point (Tan Square 3), the 2000 vehicles entering the Select Targets box have been 

tentatively assigned, based on owner-stated information, to bins for:  

 Propulsion system,  
 Highway MPG,  
 City/Highway MPG ratio,  
 Vehicle age,  
 Vehicle type,  
 Manufacturer,  
 Driver gender, and 
 Zip code (value, not a bin). 

 
At this point, information for total odometer, transmission type, driver age, and driver 

socio-economics has not been obtained. 

The number of vehicles assigned to each of the propulsion system bins can be estimated 

based on the estimated fleet fractions discussed earlier: 2% diesel, 2% hybrid, 5% GDI, and 91% 

PFI. Assuming that the 2000 vehicles of willing candidates are a random fraction of the 

population, but taking into account that the fraction assigned to the possible-GDI bin might be 

twice as numerous as the actual GDI fraction, the numbers of vehicles expected to be assigned to 

the propulsion system bins would be approximately: 

 40 diesels, 
 40 hybrids, 
 200 possible-GDIs, and 
 1720 PFIs. 

 
In this estimate, half of the possible-GDIs would actually be GDIs, and the other half 

would be PFIs.  

Once all vehicles and owners who expressed willingness to participate in the main study 

have been categorized, each of them would be assigned to one of the 20 strata that are defined by 

Highway MPG bin and City/Highway MPG bin within each of the four tentative propulsion 

system bins. Then within each of the bins, 957 vehicles of the 2000 vehicles would be randomly 

selected (within assigned propulsion system) so that an equal number of vehicles represents each 

of the 20 bins.  

Because of the low numbers of diesel, hybrid, and possible GDIs in the vehicle set at this 

point, it would be necessary to retain all willing diesel, hybrid, and possible GDIs to maximize 

the number of those technologies in the instrumented vehicle sample. Thus, the following 
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numbers of vehicles for the assigned propulsion system are expected to be randomly selected for 

recruitment: 

 40 diesels, 
 40 hybrids, 
 200 possible GDIs, and 
 677 PFIs. 

 
However, since a portion of the possible GDIs (we assume half) may actually be PFIs, 

the counts of vehicles in each propulsion system category may actually be approximately: 

 40 diesels, 
 60 hybrids, 
 100 GDIs, and 
 777 PFIs. 

 
Note that 2000 vehicles were obtained from the HHTS to help ensure that a sufficient 

number of vehicles are available to tailor the distribution of factors describing national 

representation. 

The 957 vehicles selected in the Select Targets box would go on to be recruited online in 

the Recruit OnLine box in Figure 4-2 at the top of the second column. These participant 

candidates would be sent the advanced notification package which would encourage them to 

register online for the project. As described earlier and as shown in Figure 4-2, only about 20%, 

or 191 vehicles, of those candidates that are sent advanced notification would register online. 

Those 191 vehicles that do register online would be placed in the red Participant Pool 

parallelogram at the bottom of the second column. Those 766 vehicles that do not register online 

would be followed up within two weeks by the telephone recruitment process.  

Both the online recruitment and the telephone recruitment would acquire the following 

information (for the Tan Squares 4) from the candidate who is registering to participate in the 

project: 

 For the targeted vehicle:  
— VIN (use VIN check digit checker during VIN entry), 
— Name of primary driver, 
— Total odometer reading, 
— Annual miles accumulated (approximate), 
— Transmission type (automatic, manual), 

 Targeted vehicles primary driver: 
— Age, 
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— Socio-economics, 
— All telephone numbers, 
— Primary email, 
— Confirmed name, address, zip code 

 
As usual for telephone surveying, multiple attempts (at least six) would be made to 

contact recruitment targets by telephone on various days of the weeks during the day, evening, 

and on weekends to attempt to convert the candidates into participants. Those 475 vehicles 

whose owners are reached by telephone and agree to participate would be placed in the red 

Participant Pool parallelogram at the bottom of the second column in Figure 4-2. The owners of 

291 vehicles who cannot be contacted by telephone or who refuse participation would proceed to 

the black Non-Response parallelogram in the lower left of Figure 4-2.  

At this point, the 666 vehicles that are in the participant pool are those whose owners are 

willing to participate in the main study, and data on the drivers and vehicles have been obtained. 

At this point, the propulsion system would be confirmed since the VINs of the vehicles would 

now be known. Assuming that the recruitment success rate is independent of propulsion system, 

the expected propulsion system distribution of the 666 vehicles in the participant pool is 

expected to be: 

 28 diesels, 
 28 hybrids, 
 70 GDIs, and  
 540 PFIs. 

 
The bin assignments on the 666 vehicles and drivers were based on preliminary 

information obtained at the end of the HHTS as stated by the owners. Since updated information 

would be obtained during the online and telephone recruitments, these bin assignments can be 

updated. The members of the Participant Pool would therefore have updated vehicle and driver 

information including now available information for each of the vehicles and drivers for: 

 Total odometer, 
 Transmission type, 
 Driver age, and 
 Driver socio-economics. 

 
With all of this information available for the 666 vehicles in the Participant Pool, the 

identification of participant candidates, which would occur in the Select Participants box at the 

top of the third column of Figure 4-2, can begin. The goal of the Select Participants activity 

would be to select from the Participant Pool 267 vehicles that have an equal number of 
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representatives in each of the bins within each propulsion system26 and that have distributions of 

the 11 proportionate variables for the 267-vehicle set as a whole that most closely approximate 

the distributions of the 11 proportionate variables for the nation.  

Here is how the vehicle sample for instrumentation would be created. First, final 

assignments of all 666 vehicles to all stratification bins (combinations of propulsion system, 

Highway MPG bin, and City/Highway MPG ratio bin) would be made. Then, within each of the 

80 bins, individual vehicles would be randomly selected to meet the bin’s quota. Next, the 

distributions of the 11 proportionate variables for the sample would be compared with the target 

distributions of the nation. Finally, if the distributions of proportionate variables of the sample 

and the nation are not in substantial agreement, then another random selection would be made or 

adjustments to the individual vehicle selections within each stratification bin would be made 

until substantial agreement is obtained.27  

Having a larger number of vehicles (666) in the Participant Pool than the number that are 

required for the instrumented sample (267) provides flexibility for filling all stratification bins 

and flexibility for matching the characteristics of the nation. In addition, after vehicles are 

removed for empanelment, the Participation Pool would contain 399 remaining vehicles that can 

be used, as discussed below, when the unforeseen happens to individual impaneled vehicles. 

Instrumentation packages would be sent to all of the 267 selected vehicles by insured and 

tracked overnight courier. This would occur in the green Instrumented Sample parallelogram in 

the third column of Figure 4-2. Each vehicle owner would install the shipped datalogger onto his 

vehicle (or have the datalogger installed).  

Assuming that the dataloggers would have wireless data transmission capability, 

successful installations can be detected by observing the beginning of data flow to the server. 

The third column gray diamond “Datalogger installed?” would be answered “yes” when initial 

signals are obtained from each installed datalogger. At this point, the flow diagram Maintain 

                                                 
26 For example, the goal might be to select 1 diesel for each of the 20 diesel bins, 1 hybrid per bin for each of the 20 
hybrid bins, 3 GDIs per bin for each of the 20 GDI bins, and 8 PFIs per bin for each of the 20 PFI bins. This would 
make a sample that is 8% diesel, 8% hybrid, 23% DGI, and 61% PFI. Thus, the sample will be about four times 
richer in diesels, hybrids, and GDIs that the 2013 calendar year U.S. fleet. The advantage is that each type of 
propulsion system in the sample would have enough members (≥20) to provide an adequate representation of each 
propulsion system. 
27 Random vehicle selection does not guarantee that the distributions of the sample will look like distributions of the 
nation. This can occur just because of statistical fluctuations in the random selection process or it can occur because 
the steps used to prepare the Participant Pool may have introduced biases. In any case, if this final step is required, 
the vehicle sample can no longer be considered stratified random. The trade-off of this approach is that the sample 
will be assured of not having inadvertent skewnesses that make the sample unlike the nation, for example, a sample 
with 80% female drivers. 



 

4-22 

Sample box indicates that the 267 participants would be maintained for the one year datalogging 

period. If after a time, no data is obtained from a particular datalogger, the recruitment 

methodology would attempt to help the participant get the datalogger installed and data flowing. 

Also, if the owner has difficulty installing the datalogger, various levels of datalogger installation 

assistance would be available to the owner as described in the datalogger assistance paragraphs 

of Section 4.3. If those avenues are successful, then dataloggers that were not originally 

producing data would begin to produce data and would thereby move into the Maintain Sample 

box.  

However, even after a number of attempts, perhaps 66 vehicles would not be able to 

successfully have dataloggers installed – even with assistance. This determination is indicated by 

the top gray diamond in the fourth column of Figure 4-2: Does help fix install? In these cases, 

the dataloggers would need to be returned to the main study team for alternate use and 66 

replacement vehicles would need to be chosen from the red Participant Pool parallelogram. For 

each non-instrumentable vehicle, a replacement vehicle would be chosen from the same 

stratification bin (combination of Propulsion System, Highway MPG bin, and City/Highway 

MPG bin) in the participant pool. This would ensure that the replacement vehicle has similar 

characteristics to the vehicle that is being replaced.  

Thus, with assistance with initial installations and any needed replacements from the 

participant pool completed, 267 vehicles would have dataloggers installed and transmitting 

second-by-second data. All of this would have required 333 vehicles from the participant pool. 

As was the case earlier, the larger number of vehicles (666) in the Participant Pool than the 

number required to create the instrumented sample (333) provides flexibility for replacing 

vehicles that cannot be instrumented. 

Once the 267 vehicles have been initially instrumented, participant maintenance becomes 

the main focus of the recruitment procedures. On a routine basis, the dataloggers would be 

monitored to ensure that they are still operating properly and transmitting good quality data to 

the server from all vehicles in the sample. This is denoted in Figure 4-2 flow diagram by the gray 

diamond at the bottom of the third column. If throughout the year, all the dataloggers continue to 

work, one year of data would be produced for each of the 267 vehicles. However, it is likely that 

there will be instances when data transmission stops. When this occurs, the study team would 

investigate the cessation of data. This is expected to usually be a communication with the vehicle 

owner. In some cases, the owner may need assistance to reestablish data transmission. This 

assistance could be assisting the owner with reinstallation of the existing datalogger, or it could 

be sending the owner a different datalogger. In some cases, for example if the vehicle has been in 
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a serious accident, the vehicle may need to be removed from the sample. If this occurs early in 

the one year period, the decision may be made to replace the vehicle with a new participant from 

the participant pool. Vehicles whose dataloggers fail after the first two months and cannot be 

restored would probably not be replaced with other vehicles from the participant pool unless the 

failures are abundant and early in the one-year period. 

A portion of the vehicles that have dataloggers initially installed successfully would not 

produce a full one year dataset. As shown by the lower gray diamond in the fourth column of 

Figure 4-2, about 67 vehicles (25% of the 267 vehicles) are not expected to complete the one-

year instrumentation period. If all of these estimated efficiency percentages are correct, this plan 

would produce one year of data for 200 vehicles. 

4.3 Tools for Recruitment and Participant Maintenance 

A variety of tools would be used to recruit and maintain the instrumented vehicle sample 

during the one-year data collection period. The tools would include: an incentive package, a 

project website, an advance notification package, telephone recruitment tools, datalogger 

assistance, and participant management tools. 

Incentive package – Since this study would continue over an extended period of time, 

incentives should be regularly provided to study respondents to encourage their continued 

participation. During the shakedown phase of the main study, an evaluation should be made to 

determine the appropriate levels and types of incentives necessary to ensure that a sufficient 

number of vehicles and their owners participate in the study. Based on previous experience, 

incentives in the form of cash or prepaid incentive cards (for example, amazon.com or 

giftcertificates.com) function well to keep participants engaged in a long-term study. We know 

from experience that in long-term studies such as this one, offering staggered incentives for 

completing certain tasks or assignments on a predetermined schedule also works well to retain 

participants.  

Given the level of complexity and effort required by participants in this study, we 

anticipate that total incentives ranging from $100 to $500 per panel participant would likely be 

needed; however, participants should earn a specific and preset amount at key points during the 

study. For example, at the point of confirmed participation (demonstrated by registering as a 

participant and then successfully installing the datalogger, which might be confirmed by the 

beginning of wireless data transfer), after successfully completing short interim questionnaires 

(award is based upon confirmation of successful download/delivery following data confirmation 

and processing), and at the end of the vehicle instrumentation phase and confirmation of return 
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of the datalogger. During cognitive testing of the shakedown phase of the main study, the 

incentive amounts, the number of tasks worthy of an incentive, and the type of incentive should 

be further refined. 

Five incentive package ideas have been put forward:  

 Monetary – Each participant who completes the study would receive a monetary 
cash incentive throughout the course of the study. The first installment would be 
distributed at the completion of the retrieval phase to elicit immediate 
participation. The second installment would be mailed when the datalogger has 
collected half a year of data. The third and final installment would be delivered 
upon completion of the year-long data collection and when the datalogger has 
been returned. 
 

 Gift cards – Participants would be given the option of receiving gift cards in the 
form of an incentive. A combination of gift cards would be available to allow the 
participant the freedom to select the incentive that works best for them. The gift 
cards would be distributed in the same amount and timeframe as the monetary 
incentive. 
 

 Gamification – In conjunction with the Website, the main study would use 
gamification (using games) to keep participants motivated throughout the year-
long study. Participants who complete the gamification process and maintain a 
working datalogger would be entered into a drawing for one of three iPads to be 
given away during different times of the study. A hotline would be set up to assist 
participants with questions about the study and troubleshooting techniques for the 
on-board diagnostic devices deployed to the participants. 
 

 Free AAA membership – All study participants who successfully install the 
datalogger (this means that the datalogger is transmitting data and the study server 
receives the data) would receive a free one-year AAA membership so that 
participants can receive roadside assistance. If the participant drops out of the 
study, whether they choose to drop out or drop-out is simply beyond their control, 
the free AAA membership would not be renewed for the following year. 
Participants, whose vehicles and dataloggers successfully complete the one-year 
data collection period and who return the datalogger to NuStats, would receive a 
free second-year AAA membership. 
 

 Vehicle data report – As an incentive, participants would be offered a copy of 
the detailed one-year data that was collected on their vehicle. This would likely be 
interesting, easy-to-understand graphs in a PDF document with a CSV table with 
second-by-second data as an option for technically oriented participants. 
Participants could use Excel to investigate the data on their vehicle. A few 
summary plots and statistics, for example, distribution of second-by-second fuel 
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economy, distribution of vehicle speed, total miles traveled, and average fuel 
economy, would be provided. 

 
Advance notification package – The advanced notification package for the main study 

should include, for example, an introductory letter, a study brochure, instructions and passwords 

for participating in an online recruitment interview, or alternatively for participation in a 

telephone interview. Enlisting the participation of household adults and their qualified vehicles 

into the research effort requires a concise and well written introduction that focuses on the 

benefits of the research, conveys what participation requires (for example, installation of 

instrumentation on their vehicle and participation in monthly or quarterly online, smartphone, 

and/or telephone surveys) and offers an incentive to balance out the perceived cost of 

participation.  

As a result of previous testing of advanced notification materials, an oversized colored 

envelope for the mailing would be used so that it stands out among regular mail. This results in 

higher participation rates among the advanced mailed sample. For those households that 

complete the online recruitment page, their next contact would be receipt of the research 

materials packet by mail. 

A variety of topics are candidates for inclusion in the cover letter and study brochure, 

such as: 

 [The main study sponsor] is conducting a study to see why the fuel economy 
(miles per gallon) that vehicles get can be different from the 
City/Highway/Combined MPG values that are displayed on new vehicles. 
 

 We all want the cars and trucks that we drive to have better fuel economy. We 
want to find ways to improve the fuel economy of the cars and trucks that are 
driven in the United States. To find better ways, we need to begin by finding out 
what affects the fuel economy on today’s vehicles and what driving conditions, 
such as road characteristics and weather, our vehicles must operate in. 
 

 We need cars and trucks with 1996 and newer model years that are being actively 
driven. 
 

 We are looking for about 20028 people and various types and manufacturers of 
vehicles all over the United States to participate in the study. 
 

 Participants would be randomly selected. 
 

                                                 
28 The number of vehicles in the sample will be selected by the main study sponsor. 
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 We are interested only in personal vehicles. No company vehicles. 
 

 We are offering incentives to participants to be part of the study. 
 

 We would mail participants a small datalogger that they can plug into a connector 
located below their dash. We believe that most vehicle owners would be able to 
follow the written instructions to install the datalogger. Installation assistance 
would also be available on-line, by telephone, and in person as needed. 
 

 The datalogger measures engine operation, vehicle operation, and vehicle location 
using GPS. 
 

 Data would be wirelessly transmitted to us for analysis. If requested, information 
identifying specific vehicles would be removed from the database before analysis, 
such that there would be no ability to identify specific driving from specific 
vehicles. 
 

 The datalogger would stay on the vehicle for one year. 
 

 Participants would be able to contact us during the year with questions. 
 

 After the participant installs the datalogger, the participant should just use the 
vehicle as he normally does. The participant does not need to do anything with the 
datalogger, such as entering information, after it has been installed.  
 

 We may occasionally contact the participant with requests to check the 
datalogger’s operation. 
 

 The datalogger is a passive device and cannot harm your vehicle. 
 

 The datalogger does not measure the emissions of your vehicle. 
 

 At the end of the year, the participant would disconnect the datalogger and return 
it to us in packaging and postage that we would mail to the participant at the end 
of the study.  
 

 There would be a project website that participants can use to see what the project 
is about, to see how the project is going, to contact us with questions, and to track 
the incentives that they have earned. 
 

 We can send a copy of the data from your vehicle after the study has concluded if 
you request it.. 
 

 If you agree to participate, you will not have liability for the datalogger if 
something happens to it. There is no chance that the datalogger can damage your 
vehicle in any way, which we will warranty. 
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A draft advanced notification package cover letter is shown in Figure 4-3. The outside 

and inside of a draft tri-fold study brochure are shown in Figures 4-4 and 4-5. These are sample 

documents designed for this pilot study report and use the ICCT logo. The documents for the 

main study would be redesigned using the sponsor’s logo and using text reflecting the scope and 

policies developed for the main study. For example, there should be a statement that there will be 

no link between the data and the participant and that suggests that this means participants should 

not have a concern with sharing the data. 
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Figure 4-3.  Draft Advanced Notification Package Cover Letter 
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Figure 4-4.  Outside of Draft Tri-Fold Study Brochure 
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Figure 4-5.  Inside of Draft Tri-Fold Study Brochure 
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Project website – To achieve the main study’s communication and survey participant 

collaboration needs, it would be useful to develop a website to provide information about the 

survey and to deliver an online recruitment and retrieval processes for basic data. A participant’s 

Personal Identification Number (PIN) could be provided to and be required from participants 

submitting information through the website. The website would also add legitimacy to the study 

and serve as a point of engagement for participants who have opted for web-based 

communication. Based on our experience with using similar websites for travel behavior surveys, 

which carry a similarly high burden for participants, the website forum would have a positive 

impact on survey cooperation and response rates throughout the study. The website should 

mirror the look and feel of the printed materials that would be developed. 

A draft of a sample fuel economy main study website homepage is shown in Figure 4-6. 

The reader can go to http://www.surveys.nustats.com/ICCT/ to examine the sample 

website. For this pilot project the website has limited operation. The final study website would 

include important features to help ensure that information entered by the participant candidate 

would have few errors.  

The main study’s website would provide the following information to members of the 

general public and survey participants: 

 Study information for participants – Topics to provide information about the 
study for participants would include research purpose and benefits, information 
about the study sponsor, survey/participant privacy, and information about 
participation. 
 

 FAQs about the study – A dynamic FAQ-style approach would be used to answer 
common questions about the study. The frequently asked questions would be 
database driven and can easily be modified and added to as new questions or 
issues arise during the course of the study. 
 

 Contact method for participants and the public – The website would provide a 
way for participants and others to contact the study team in a formal manner, 
whereby all messages are logged to a central database for monitoring and 
tracking. The public can submit questions on a variety of categories to help direct 
the messages to specific persons or groups within the study team (for example, 
how to install the dataloggers, how the data would be used, web technical support, 
etc.). 
 

 Online recruitment – The website would have tools that allow respondents to 
participate in the study by answering a series of recruitment questions using a 
simple survey style web interface.  
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Figure 4-6.  Draft Main Study Fuel Economy Website Homepage 
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 Data submission – A web-based retrieval instrument would enable respondents to 
provide their basic data online. This could be especially useful for basic vehicle 
data submitted by vehicle owners. 
 

 Discussion board – A survey or discussion board venue would be used for 
periodically engaging participants in the study to maintain their interest and retain 
them as participants. This would include a tool for tracking their earned incentives 
throughout the study. 
 

 Password protection – Most pages on the public website would not be password 
protected. However, access to the online versions of the recruitment, data 
retrieval, scripts, and periodic surveys would require a PIN or other login 
information. The site’s pages would be designed with the user in mind to make 
the access to all project information, documentation, and data files simple and 
user-friendly. 

 
Figure 4-7 shows a draft online recruitment page that would be used to support online 

recruitment described by the top rectangle in the second column of Figure 4-2. Figure 4-8 shows 

a draft recruitment sign-off page. The final study website recruitment pages would include 

important features to help ensure that information entered by the participant candidate would 

have few errors. These features would include VIN check digit checking with request for re-

entry if the entered VIN had an error and opportunity to change the name of the primary driver. 

Telephone recruitment tools – As mentioned in Section 4.2, only about 20% of the 

households that receive the advanced notification package are expected to respond by completing 

the website recruitment page. About two weeks following the mailing, the remaining 80% of the 

targeted households would be contacted using telephone recruitment calls. Recruitment 

interviewers would attempt to establish a rapport with the household contact, answer basic 

questions about the study, and efficiently and effectively secure household participation. The 

interviews would be accomplished by the telephone interviewer filling out the online recruitment 

page that the targeted household would have filled out had it responded online. A series of “hot 

buttons” would be available to the interviewer to guide the interview through the recruitment 

webpage to ensure collection of all critical data elements, to describe the project to the 

interviewee, and to answer questions that might arise. 
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Figure 4-7.  Draft Online Recruitment Page 
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Figure 4-8.  Draft Online Recruitment Sign-Off Page 

 
 

Regardless of whether a household contact agrees to participate via the online survey or 

the telephone interview, they would have completed a short recruitment screening interview to 

confirm eligibility and to document demographic characteristics.  

At the conclusion of the recruitment interview, the home address, mailing address, and/or 

email address would be confirmed or obtained, and the conditions for payment of the incentives 

would be reiterated. Experience has shown that consistent confirmation of how and when an 

incentive is earned increases the effectiveness of this participation technique, while ensuring that 

the budget for the incentives yields the desired return in terms of increased participation levels.  

Assistance with dataloggers – Within one week following recruitment by telephone or 

by online website, each participant’s vehicle and demographic information would be used to 

customize participation packets for each vehicle owner. The packet would include a cover letter, 

a datalogger, datalogger installation instructions, a reminder of the study participation time 

period, and a participant booklet among other items. The assembled packets would be sent to the 

recruited households by Federal Express with insurance for the value of the datalogger. During 

this initial phase, the vehicle owner would automatically register as a participant when they 

install the instrument on their vehicle and the datalogger begins wireless data transmission (if 

this option is selected for datalogging). 
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Because of the nature of OBDII dataloggers, most participants should be able to install 

the datalogger on the vehicle. The installation instructions in the participation packet would 

provide guidance for performing the installation. In addition, installation instructions would also 

be available on the project website in the event that the participant has misplaced the installation 

instructions. For those participants that require additional assistance with installing the 

datalogger, over-the-phone support would be available through a telephone number provided in 

the participation packet. Finally, for those participants with the desire to participate but who may 

not have the skills, time, or desire to install the datalogger on his vehicle, an installation service 

would be available to assist with the installation. This service would contact the participant, 

make an appointment to install the datalogger, go to the vehicle, and perform the datalogger 

installation at the participant’s convenience and at no cost to the participant. 

At the end of the one year data collection period, the datalogger would need to be 

returned to the project team. At this time, the participant would receive pre-paid return Federal 

Express packaging materials. Just as with datalogger installation, datalogger retrieval instructions 

would be provided with the packaging materials. Datalogger retrieval options would also include 

online support, telephone support, or in-person support by a technician.  

Participant management tools – The length of time between the start (vehicle 

instrumentation) and end (datalogger removal) phases of the study of up to one year suggests that 

at least four responding contacts be made during the study. The focus of these contacts should be 

on confirming and updating owner information, including changes in vehicle ownership and 

changes in driving or environmental conditions. These “maintenance contacts” should be short 

and simple and be administered by mail, with web and telephone options according to the 

participant’s preference. The responses would be tracked so that a lack of online or mail response 

would result in a telephone contact. 

Participation by owners of sampled vehicles is critically important to the success of this 

project. The advance letter for participating vehicle owners and the introductory script for 

recruitment must fully disclose the level of commitment required for participation; and it must be 

done in a very inviting manner so that participation is viewed as important to the community and 

relevant to their personal mobility. The challenge of recruiting and retaining participants 

involves not only motivating them to participate, but also not “over educating” them on the 

transportation issues, which can inappropriately bias responses.  

After a candidate initially accepts participation in a study, a principle problem of panel 

research is attrition. The recommended design would be structured to minimize that attrition by 
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several activities. Targeted incentive payments are cost effective methods of minimizing 

attrition. Therefore, participants should receive an incentive payment in return for each interim 

contact opportunity in which they participate. Finally, in the event that a sampled vehicle owner 

or their eligible vehicle is no longer able to participate in the study, protocols would be set at the 

design phase of the study for a replacement vehicle. These protocols would define the criteria for 

recruiting a replacement vehicle to meet the study requirements.  

4.4 Validation of Vehicle Recruitment Methodology 

The vehicle recruitment methodology can be validated using two different activities. The 

first activity is cognitive testing which occurs on draft recruitment materials using a small group 

of people to evaluate the understanding of those materials. The second is a shakedown process 

that would occur during the beginning of the main study as initial candidates are slowly recruited 

for the study. During this shakedown period, recruiting methodology can be evaluated and 

modified based on the initial findings of actual participant candidates and participants.  

4.4.1 Cognitive Testing 

Cognitive testing can be used to evaluate the effectiveness of draft recruiting materials. 

This kind of testing involves selecting people who have no prior knowledge of the project to 

work through the materials just as participant candidates would use the materials. After that 

testing, the people are interviewed to determine whether they understood the concepts covered 

by the recruiting materials. If there was a misunderstanding or a concept that was unclear, then 

the draft recruiting materials can be modified to remove the problem. Four different recruiting 

materials would benefit from cognitive testing.  

Advance notification package cover letter – The advance notification cover letter, a 

draft of which is shown in Figure 4-3, is used to re-acquaint a person who expressed willingness 

to be a participant in the main study during their initial interview in the household travel survey. 

The major purpose of the cover letter is to provide more details about the project to the candidate 

and to encourage them to register as an official candidate for participation online or through a 

telephone interview. Cognitive testing would be performed by having people unfamiliar with the 

project read a draft cover letter and then be interviewed by the cognitive tester.  

Advance notification brochure – The advance notification package would also contain 

a tri-fold brochure that gives additional details about the main study. The small group of 

cognitive testing people would also be asked to examine the brochure in the presence of the 

cognitive examiners. A conversation between each person and the examiner would determine if 
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the person understands the brochure and would help identify questions that a participant 

candidate might have. If some of the questions are repeatedly asked by people, then those 

questions may need to be included either in the project website or brochure to add clarity. 

Project website – The advance notification cover letter would direct participant 

candidates to the project website. The website would contain a splash page and a recruitment 

page, at a minimum. The group of people undergoing cognitive testing would be asked to sit 

down at computers, go to the study website, and register on the project website for participation. 

They would be asked about the content of the splash page and about any problems or questions 

they might have about registering for recruitment. After that cognitive testing is completed, 

modifications can be made to the project website for its improvement. 

Telephone recruitment hot buttons – To cover recruitment of candidates who prefer 

telephone recruitment over online recruitment, a group of people unfamiliar with the project 

would undergo cognitive testing using the telephone recruitment technique. In this situation, the 

people would be interviewed one-on-one and in person by an examiner who reads the online 

questions to them as if they were speaking on the telephone. For telephone recruitment, 

interviewers would have a set of hot buttons which only they can see on the online recruitment 

page to provide guidance to the interviewer and to answer questions that a participant candidate 

might have. The effectiveness and the understanding of the content of the text and hot buttons 

would be tested during cognitive testing. Any modifications that need to be made to the hot 

buttons text to improve understanding or clarity would be made before recruiting for the main 

study begins. 

4.4.2 Development and Adjustments During Main Study Shakedown 

Some characteristics of the recruiting methodology are difficult to develop and adjust 

using just cognitive testing. For those characteristics, adjustments of the recruiting methodology 

can be made during the initial phases of the main study which we call the shakedown phase. 

During the shakedown phase, the rate of participant recruitment may be kept relatively low to 

allow time for adjustments to be made. 

Incentive investigation – For a national effort of one-year duration, incentives need to be 

offered to convince a sufficiently large percentage of candidates to participate. Many different 

types and sizes of incentives can be designed. However, which of these designs work adequately 

well can probably be determined only by trying them on participant candidates. Some draft 

incentive packages were presented in Section 4.1. During the shakedown phase, these draft 

incentive packages, as well as others that may be thought of, can be tested on initial participant 
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candidates to determine which may be most effective. Following this initial incentive testing 

during the shakedown phase, a single incentive package would probably need to be settled upon. 

However, in some circumstances, the incentive may need to be negotiated. For example, for 

vehicles that are rare in the fleet, higher incentives may be offered so that all bins in the 

stratification structure may be filled. 

Feedback and frequently asked questions – The questions and comments from the first 

participant candidates who are communicated with – either verbally on the telephone or through 

e-mail – would reveal common questions and misunderstandings that participant candidates may 

have. By recording these comments, questions, and suggestions, the recruitment tools can be 

improved so that future participant candidates would be better informed early in the recruitment 

process. Some of the frequently asked questions, for example, may be so common that they 

would need to be put in the FAQ list on the project website. 

Evaluation of efficiency rates – The flow diagram for recruitment shown in Figure 4-2 

used assumed values for efficiency rates at different points in the recruitment process. To a 

degree, these rates are based on little prior experience. During the shakedown phase, the 

dispositions of early participation candidates, with regard to their flow through the process would 

provide more concrete and realistic values for the actual efficiency rates that would be observed 

during the main study. As more and more participant candidates are recruited and become part of 

the participant pool, the updated efficiency rates can be used to refine the estimates of the 

numbers of vehicles and owners that would be needed to complete the main study. 
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5.0 Datalogger Design  

5.1 Objectives and Approach 

All 1996 and newer light-duty gasoline-powered vehicles and 1998 and newer light-duty 

diesel-powered vehicles manufactured for sale in the U.S. are equipped with second-generation 

on-board diagnostic systems, generally referred to as OBDII. These OBDII systems provide 

SAE-standardized information as well as manufacturer-specific, or enhanced, information that is 

available using special request and decoding information available from the vehicle 

manufacturers. One objective of this pilot study was to procure or develop a system that collects 

and records this OBDII data in order to gather vehicle operating information that could be used 

to calculate in-use second-by-second fuel economy estimates as well as various operating 

information such as vehicle speed, acceleration, location, and engine operating conditions. A 

system was sought for use in this study that would record the vehicle’s OBDII data and turn on 

and off automatically without user input. For data resolution reasons, some parameters must be 

collected at rates up to 2 Hz, although other parameters may be collected at a lower rate. 

Collection of SAE-standard and some manufacturer-specific (enhanced) parameters will be 

required.  

Table 5-1 was developed based on requirements provided in ICCT’s September 5, 2012, 

Request for Proposals and lists the initial specific requirements for the datalogger to be sought 

for this study, as well as ERG’s intended approach for obtaining the information. This 

information and approach formed the basis for ERG’s datalogger research.  

Fuel Type – Due to each vehicle’s ability to automatically adjust air/fuel ratio based on 

exhaust oxygen content, determination of fuel type from the OBDII datastream can be 

challenging in a large vehicle study. ERG investigated using fuel trim and oxygen (or lambda) 

sensor ratio data along with mass air flow rates to determine feasibility of quantifying ethanol 

content. However, it was determined the most practical approach would be to collect regional 

fuel ethanol content data in each area in which the study is being conducted. As a verification of 

regional data, it may be possible to request participants to occasionally use specific brands of 

oxygenated fuels with known ethanol content (purchases at certain gas stations could be verified 

using GPS data or fuel receipts). The operating data obtained for that tank of fuel could then be 

used to “calibrate” the effect of fuel type on fuel economy (i.e., adjust the stoichiometric air/fuel 

ratio for the actual known fuel being used). 
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Table 5-1.  Summary of Datalogger Requirements 

Data Requirement Approach Description 
Date/ time, 1 Hz Date/time will be required for each trip (engine on/off episode).  

Vehicle speed,  
2 Hz 

Vehicle speed is a standard SAE J1979 PID, and will also be available from 
the logger’s GPS. At least one of these two parameters will be acquired on a 2 
Hz basis (the other may be 1 Hz), in order to allow acceleration calculations.  

Vehicle acceleration,  
2 Hz 

A datalogger with an internal 3-axis accelerometer with 2 Hz acquisition 
capability will be sought. Acceleration may also be computed from OBD or 
GPS speed. 

Distance traveled,  
1 Hz 

Distance traveled is to be calculated from vehicle speed (OBDII PID 0D) or 
GPS data, whichever is used for vehicle speed. 

Fuel rate,  
2Hz 

Data which can be used to calculate fuel consumption will be collected on a 2 
Hz basis. Several methods were evaluated and are described later in this 
report.  

Fuel type, 1Hz  
The ability to determine fuel type (ethanol content of fuel) was desired. The 
recommended approach for collecting this information is described in the Fuel 
Type section which follows.  

Intake air temp, 
1 Hz 

Both ambient air temperature (PID 46) and intake air temperature (PID 0F) are 
standard SAE J1979 PIDs which may be requested on a 1 Hz basis.  

Engine speed,  
1 Hz 

Engine RPM (PID 0C) is a standard SAE J1979 PID that may be requested on 
a 1 Hz basis. 

Engine load,  
1 Hz 

Absolute load (PID 43), calculated load (PID 04), and throttle position (PIDs 
11, 45) are standard SAE J1979 PIDs which may be requested on a 1 Hz basis. 

Altitude, 1 Hz 

Barometric pressure (PID 33) is a standard SAE J1979 PID and may be 
requested from the OBDII-port, and altitude will also be collected (if 
available) from the GPS data on a 1 Hz basis. If higher accuracy is needed, 
vehicle altitude obtained from an overlay of vehicle GPS coordinates onto GIS 
maps could be developed and would likely more accurate than GPS altitude. 

Road grade, 2 Hz 

Although not specified as a datalogger requirement, road grade is important 
since it affects engine load. Road grade can be estimated from GIS altitude 
differences, a barometric altimeter, or possibly calculated from 3-axis 
accelerometer data. The acquisition rate should be equivalent with speed and 
acceleration acquisition rates (2 Hz). 

Location, 1 Hz Geographic location will be collected from the GPS data on a 1 Hz basis. 
Climate control and 
A/C compressor,  
1 Hz 

Collection of cabin climate control and air conditioning compressor on/off 
status was specified, and the approach for collecting this information is 
described in the “Climate Control” section, which follows. 

Hybrid battery state 
of charge,  
1 Hz 

Collection of OEM Enhanced PIDs will likely be required for acquiring 
battery state of charge for hybrids. “Hybrid battery pack remaining life” (PID 
5B) may be available on some vehicles, and may yield sufficient information 
for calculate power usage during vehicle operation.  

IC engine on/off 
status, 1 Hz 

Several standard SAE J1979 PIDs may be used to determine internal 
combustion (IC) engine on/off status, such as mass air flow rate (PID 10), 
manifold absolute pressure (PID 0B), or RPM (PID 0C).  

Data Storage 
The logger was specified to be able to store a full year’s worth of data and / or 
periodically transmit the data wirelessly. The approach for this is described in 
the section entitled “Data Handling and Storage”.  
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Climate Control – Air conditioning compressor on/off status affects fuel economy and is 

therefore important to identify. Generally, the status of a component not directly related to the 

powertrain is not available as a standard SAE J1979 parameter. One approach for acquiring this 

information is through collection of enhanced (OEM-specific) data for specific vehicle 

controllers, although these queries will vary by manufacturer and sometimes model year. This 

will add cost to the dataloggers and will have some fleet coverage limitations. Alternatively, A/C 

compressor status may be determined by comparing cabin temperature (as measured by an 

external thermocouple linked to the datalogger) with ambient temperature, or it may be possible 

to develop an algorithm using engine load, throttle position, and engine RPM (all SAE J1979 

standard parameters) to determine when the air conditioning compressor cycles on and off. It 

might also be possible to use the output from a voltage spike detector to identify when the A/C 

compressor cycles on and off, although the strength of this signal could vary from vehicle to 

vehicle and will be obscured by the vehicle’s voltage regulation and voltage changes due to 

intermittent use of other accessories such as vehicle lights. The feasibility of these alternative 

strategies (thermocouple measurements, load/throttle position/RPM evaluation, and voltage spike 

analysis) was beyond the scope of this pilot study but could be explored in the future as needed.  

Data Transmission and Storage – The amount of data collected, and therefore the 

memory required, over the study will be dependent on the final list of OBDII variables available 

for each vehicle (i.e., number of variables and number of bytes per variable), the type of logger 

used, the number and type of additional non-OBDII variables collected (such as GPS, 

logger/cabin temperature, barometric altimeter, and accelerometer data), the acquisition rate by 

variable, the type of data file used to store the data, and the amount of time each vehicle is 

driven. A preliminary assessment performed by ERG shows a datalogger collecting 30 channels 

of ASCII data on a 2-hz basis (OBDII parameters with GPS), operating for 24-hours per week 

(approximately 3.5 hours/ day) for 52 weeks per year would collect approximately 1.3 GB of 

data.  

The three options for handling data include storing the data locally and periodically 

transmitting data packets via a cellular modem, local storage and transmitting the data via Wi-Fi, 

or relying exclusively on on-board storage (internal or SD card). Each of these options is 

discussed in Section 5.3.3. For both the cellular and the Wi-Fi options, data would be stored 

locally on the datalogger until after the data was broadcast and verified. This would most likely 

be accomplished through the use of rolling memory in which records are not overwritten until 

the memory allocation is full, and then only the oldest records are overwritten. This would help 

ensure data is transferred and verified prior to any records being overwritten.  
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5.2 Fuel Economy Estimates 

Before describing the market research conducted to identify dataloggers for use in this 

study, an overview of some methods of calculating fuel economy and the conditions under which 

those methods would be used is now provided.  

Our objective in this study was to obtain acceptably accurate instantaneous (i.e., second-

by-second) fuel economy estimates from a broad variety of vehicles under a diverse range of 

operating conditions using standardized SAE J1979 PIDs. However, there are some scenarios in 

which the use of the SAE J1979 PIDs might not provide suitable results, since the availability of 

specific generic “live datastream” PIDs varies among vehicle types and operating conditions. 

The vehicle types and operating conditions expected to be encountered are described below, 

along with our recommended approach for estimating fuel consumption in each of these 

scenarios.  

5.2.1 Vehicle Types 

Gasoline Vehicles That Broadcast Mass Air Flow – Many gasoline-powered vehicles 

directly report an estimate of the mass of air entering the engine as measured by the engine’s 

mass air flow sensor. These can include port fuel injected vehicles, gasoline direct injection 

vehicles, and hybrids. For these vehicles, the gasoline combustion equation and the reported 

mass of air provided to the engine can be used to calculate the amount of fuel required for 

stoichiometric engine operation. Deviations from stoichiometric operation can be calculated 

using the ratio of actual combustion to theoretical stoichiometric combustion (lambda), which is 

reported as a standard SAE J1979 PID for vehicles with wide-band oxygen sensors. The 

following equation may therefore be used to calculate such a vehicle’s instantaneous fuel 

economy: 

Fuel Economy (distance per fuel volume) = k1 * Speed *  * AFRstoich 
                                  Mass Air Flow 

 
In the above equation,  represents the adjustment for non-stoichiometric operation, and 

k is a constant that accounts for various unit conversions and an estimated density of the fuel. 

The mass of air required for stoichiometric combustion will vary based on the ethanol content of 

the fuel. The following equation, with similar variable definitions, may be used to calculate fuel 

used on a time-basis: 

Fuel Consumption (volume per time) =   k2 * Mass Air Flow 
                                   * AFRstoich  
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Not all vehicles are manufactured with wide-band oxygen sensors. For vehicles without 

wide-band oxygen sensors, lambda is not available as a standard SAE J1979 parameter. Instead, 

a voltage output from a narrow-band oxygen sensor is typically available. As opposed to the 

wide-band oxygen sensor, which provides a moderately linear output signal over a relatively 

wide operating range, the narrow-band oxygen sensor functions a bit like a binary switch (rich or 

lean). Because small changes in amount of exhaust gas oxygen content radically change the 

output voltage, voltage output from a narrow-band sensor cannot be used to accurately quantify 

deviation from stoichiometric, but instead only indicates whether a vehicle is operating at 

stoichiometric, rich, or lean conditions. Therefore, for these vehicles, overall average fuel 

economy estimates can be determined using standard SAE J1979 PIDs (since these vehicles 

generally target stoichiometric operation), but accurate instantaneous fuel economy estimates 

using narrow-band oxygen sensor data can be problematic. For narrow-band oxygen sensor 

vehicles, it may be possible to use calculated load (standard PID 04) along with mass air flow, to 

calculate fuel rate during non-stoichiometric operation, or alternatively, the use of OEM-specific 

(enhanced) fuel injector rate data may provide acceptably accurate instantaneous fuel economy 

estimates. If fuel injector rate data is not available as an OEM-specific parameter, it may be 

possible to use fuel injector pulse width (this would also be an OEM-specific parameter) data to 

estimate instantaneous fuel consumption. The relationship between fuel injector pulse width and 

fuel rate (calculated with mass air flow) observed during instances of stoichiometric operation 

could be used to correlate fuel injector pulse width with fuel rate for non-stoichiometric 

operation. For some late model vehicles, engine fuel rate (SAE J1979 standard PID 5E) may also 

be available to directly determine fuel economy, but the accuracy of this PID and prevalence in 

the on-road U.S. fleet is unknown. Results from analysis of vehicles with both wide-band and 

narrow-band oxygen sensors are provided in the Datalogger Validation section of this report, 

Section 5.5. 

Gasoline Vehicles That Do Not Broadcast Mass Air Flow – Many on-road vehicles 

provide a mass air flow signal (see Section 5.2.2). However, a number of vehicles (Chrysler, 

Honda and certain vehicles from other manufacturers) use the absolute pressure measured in the 

intake manifold to estimate the mass of air entering the engine using models involving the 

volumetric efficiency and displacement of the engine. This type of engine management is 

referred to as the Speed-Density method, and is based on the ideal gas law but with a volumetric 

efficiency factor to account for the volume variable in the ideal gas law.  

MAF = MAP * Displacement * RPM * % Volumetric Efficiency  
 k3 * R * Temperature 
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In the above equation, R is the ideal gas constant and % Volumetric Efficiency is a 

function of manifold absolute pressure and engine speed which is calculated using look-up tables 

stored in a vehicle’s engine control unit (ECU). Using the appropriate value for volumetric 

efficiency (based on engine speed and load), the vehicle’s ECU can then calculate an estimated 

mass of air entering the engine at that point in time, and determine the amount of fuel necessary 

for optimal combustion. 

However, this presents a problem when trying to estimate fuel economy using standard 

SAE J1979 OBDII data. While it is possible to assume an average volumetric efficiency for an 

engine, this estimate will not accurately represent instantaneous volumetric efficiency, since 

values for volumetric efficiency vary significantly based on engine load and speed, and the 

volumetric efficiency “maps” vary among engine types. For individual vehicles (engine and 

model year), it may be possible to obtain the factory volumetric efficiency look-up tables in 

order to determine mass air flow, but it would be expensive and difficult for a broad vehicle 

study such as this. It may also be possible to estimate volumetric efficiency table look-up values 

by parameterizing “average” values into equations that predict approximate volumetric 

efficiency based on engine speed and load, but again these equations will be engine-type 

dependent and will not likely provide needed accuracy over a wide range of operation.  

ERG performed a preliminary feasibility assessment of the accuracy of calculating mass 

air flow from manifold absolute pressure using general speed-density equations and OBD data 

from a 2006 Ford Freestar with a 3.9L normally-aspirated V6 engine (the OBD system for this 

vehicle broadcasted both MAP and MAF data). After developing general equations to estimate 

mass air flow from manifold absolute pressure and engine speed based on general speed-density 

information and a “typical” speed-density table downloaded from the Internet, ERG estimated 

mass air flow from the Freestar’s MAP and RPM data collected during a 90-minute drive. A 

scatter plot of the calculated values vs. the measured values is shown in Figure 5-1, with the 1:1 

line shown in red. ERG did not attempt to refine this methodology to improve the correlation, 

although future proposed analysis for MAP to MAF conversions is described in Section 5.6.1 

(Evaluate MAP-to-MAF Conversion Calculations), and analysis to calculate fuel rate from MAP 

and narrow band-equipped vehicles is proposed in Section 5.6.3 (Calculate Fuel Flow Rate for 

Manifold Air Pressure / Narrow-Band O2 Sensor Gasoline Vehicles).  
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Figure 5-1.  Preliminary Assessment of Calculating Mass Air Flow from Manifold 
Absolute Pressure  

 
 

Use of OEM-specific queries (enhanced PIDs) of fuel injector rate is another alternative 

for determining instantaneous fuel economy estimates for vehicles that do not provide mass air 

flow as a standard SAE J1979 parameter. If fuel injector rate is not available as an OEM-specific 

query, it may be possible to use fuel injector pulse width (this would also be an OEM-specific 

query) in order to estimate instantaneous fuel consumption. However, for MAP-only vehicles, 

the relationship between fuel injector pulse width and fuel injector volume could be difficult to 

obtain without fuel injector calibration curves. We envision that research will be required, by 

vehicle manufacturer, in order to convert each manufacturer’s relevant enhanced data into 

common fuel rate information that can be used in the study. We do not envision standard “fuel 

rate” (mL/s or similar) will generally be directly broadcast as an enhanced PID, at least on older 

vehicles. In addition, as shown in Section 5.5.2 (Standard SAE J1979 vs. OEM-enhanced 

Validation), ERG identified some potential issues associated with the accuracy of fuel economy 

estimates based on fuel injector volume (an enhanced PID). As described in Section 5.6.6., more 

investigation is needed to better understand the limitations of fuel economy estimates based on 

enhanced PID data.  

Diesel Vehicles – Because of the broad variety of diesel engine sensors and air/fuel 

management techniques, and also the wide range of air/fuel ratios over which diesel engines 
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operate, methods to calculate fuel consumption of a diesel engine differ from those to calculate 

fuel consumption from a gasoline (stoichiometric) engine. OEM-specific queries of fuel injector 

rate may provide acceptably accurate instantaneous fuel economy estimates for diesel-powered 

vehicles, or strategies employing fuel rates based on instantaneous engine loads (standard SAE 

J1979 data) may be used, but these methods can require engine-specific datalogger calibrations 

that might be challenging over a fleet-wide vehicle study. As stated previously, ERG identified 

some potential issues associated with the accuracy of fuel economy estimates based on fuel 

injector volume (an enhanced PID). More work is needed to evaluate methods to calculate fuel 

consumption from diesel vehicles, as described in Sections 5.6.4 (Analyze Light-Duty Diesel 

Vehicle Exhaust Data and OBD Data) and 5.6.6 (Perform additional evaluation of enhanced PID 

data). 

Hybrid (non-plug-in) Vehicles – One objective of this study is to measure fuel economy 

for non-plug-in hybrid vehicles. The strategy to determine the instantaneous fuel economy is the 

same as described above, and OEM-specific parameters are recommended for collection of 

hybrid battery state of charge data. This information may be required in determining the overall 

energy (fuel and electrical) consumed during any particular trip. 

5.2.2 Prevalence of Mass Air Flow Vehicles in the U.S. Vehicle Fleet 

The data obtained during testing of vehicles in the Kansas City Light-Duty Vehicle 

Study29 can be used to estimate the fraction of the OBD-equipped fleet that provides mass air 

flow data. Because that study was performed in the 2005 timeframe, only model year 2005 and 

older vehicles were included in the study. Accordingly, the Kansas City data can be used to 

determine the prevalence of OBD mass air flow broadcasting only for 1996 to 2005 model year 

vehicles.  

ERG examined OBD data from the Kansas City Study and confirmed that OBD data had 

been logged for 343 vehicles. The OBD data for those vehicles was examined to estimate the 

fraction of the OBD-equipped fleet that provides mass air flow data. The Kansas City Study 

results were evaluated by model year and by vehicle make to identify trends in MAF prevalence. 

Table 5-2 presents results of this analysis by vehicle make. As can be seen in this table, a slightly 

higher number of vehicles broadcast MAF data than those that did not (53% of the vehicles 

broadcast MAF, compared to 47% that did not). Chrysler-family vehicles (Chrysler, Dodge, 

                                                 
29 S. Kishan, A.D. Burnette, S.W. Fincher, M.A. Sabisch, W. Crews, R. Snow, M. Zmud, R. Santos, S. Bricka, E. 
Fujita, D. Campbell, P. Arnott, “Kansas City PM Characterization Study, Final Report,” prepared for U.S. 
Environmental Protection Agency, prepared by Eastern Research Group, BKI, NuStats, Desert Research Institute, 
October 27, 2006, http://www.epa.gov/oms/emission-factors-research/420r08009.pdf. 
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Honda, Jeep, and Plymouth) and Honda vehicles were primarily non-MAF. A few General 

Motors makes (Geo, Saturn, Pontiac, and GMC), Acura, and Toyota were found to have some 

non-MAF vehicles. Vehicles of the remaining manufacturers seem to primarily broadcast MAF. 

Table 5-3 presents the prevalence of MAF vs. non-MAF data by vehicle model year, as 

seen in the Kansas City data. As can be seen in this table, no clear model year trend is evident. 

To ensure the vehicle make profile from the vehicles tested in the Kansas City study was 

similar to the vehicle make profile of the on-road U.S. fleet, ERG compared the vehicle make 

percentages of the Kansas City Study OBD vehicles included in this analysis with the by-make 

percentages from Maryland registration data. Results of that comparison are provided in Table 5-

4. In general, the by-make percentages from the Kansas City data and the Maryland registration 

data were similar enough that no reweighting was deemed necessary for this evaluation. 
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Table 5-2.  MAF vs. non-MAF Vehicles from Kansas City Data, by Make 

Make30 MAF Data Present MAF Data Missing 
ACURA 1 1 
BUICK 9 1 
CHEVROLET 27 4 
CHRYSLER 0 13 
DODGE 0 31 
FORD 48 3 
GEO 0 1 
GMC 2 2 
HONDA 0 57 
HYUNDAI 2 0 
INFINITI 1 0 
ISUZU 4 1 
JEEP 0 10 
KIA 8 0 
MAZDA 7 0 
MERCURY 6 0 
MISTUBISHI 3 0 
NISSAN 14 0 
OLDSMOBILE 4 0 
PLYMOUTH 0 7 
PONTIAC 1 4 
SATURN 1 11 
SUBARU 3 0 
TOYOTA 38 14 
VOLKSWAGEN 1 0 
VOLVO 3 0 
Total 183 160 

 
Table 5-3.  MAF vs. non-MAF Vehicles from Kansas City Study Data  

by Model Year 

Vehicle Model Year MAFs Present MAFs Missing % with MAF 
1996 14 18 44% 
1997 14 15 48% 
1998 23 15 61% 
1999 15 19 44% 
2000 15 14 52% 
2001 37 23 62% 
2002 29 20 59% 
2003 22 26 46% 
2004 12 9 57% 
2005 2 1 67% 
Total 183 160 53% 

                                                 
30 Green background indicates MAF was almost always present, red indicates MAF was almost never present, and 
blue indicates MAF was occasionally present. 
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Table 5-4.  Comparison of Vehicle Make Distributions  

between Kansas City Study Data and Maryland Registration Data 

Make 

Vehicles in 
Maryland 

Registration Data 

Vehicles in 
Kansas City 
Study Data 

Vehicles in 
Maryland 

Registration Data 
(%) 

Vehicles in 
Kansas City 
Study Data 

(%) 
ACURA 36995 2 2.2% 0.6% 
BUICK 37535 10 2.3% 2.9% 

CHEVROLET 213545 31 13.0% 9.0% 
CHRYSLER 42683 13 2.6% 3.8% 

DODGE 108052 31 6.6% 9.0% 
FORD 250404 51 15.2% 14.9% 
GEO 0 [Geo=Chevrolet] 1 0.0% 0.3% 
GMC 37923 4 2.3% 1.2% 

HONDA 191579 57 11.6% 16.6% 
HYUNDAI 33637 2 2.0% 0.6% 
INFINITI 13411 1 0.8% 0.3% 

ISUZU 7979 5 0.5% 1.5% 
JEEP 59256 10 3.6% 2.9% 
KIA 13250 8 0.8% 2.3% 

MAZDA 34472 7 2.1% 2.0% 
MERCURY 33026 6 2.0% 1.7% 

MISTUBISHI 25476 3 1.5% 0.9% 
NISSAN 90401 14 5.5% 4.1% 

OLDSMOBILE 16714 4 1.0% 1.2% 
PLYMOUTH 9609 7 0.6% 2.0% 

PONTIAC 35134 5 2.1% 1.5% 
SATURN 28283 12 1.7% 3.5% 
SUBARU 24548 3 1.5% 0.9% 
TOYOTA 237937 52 14.5% 15.2% 

VOLKSWAGEN 40046 1 2.4% 0.3% 
VOLVO 23645 3 1.4% 0.9% 

 
5.2.3 Operation Types  

ERG’s recommended approach for estimating instantaneous fuel economy is provided in 

the following subsections. 

Operation on Oxygenated Fuels – In the U.S., fuels are oxygenated (they have an 

ethanol content typically up to 10% or more). Due to the higher oxygen content of an oxygenated 

fuel, the amount of air required per unit of fuel for stoichiometric combustion is reduced in 

comparison with non-oxygenated fuels. Modern closed-loop controlled vehicles automatically 

adjust the air/fuel ratio, so the ethanol content of the fuel must be known to accurately calculate 
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the fuel economy as described above. For pure ethanol, the air/fuel ratio is approximately 9.0.31 

Various blends will have stoichiometric air/fuel ratios between 9.0 and 14.7, and are roughly: 32 

 E0 (gasoline: 0% ethanol): 14.65 
 E5 (5% ethanol):  14.36 
 E10 (10% ethanol):  14.08 
 E15 (15% ethanol):  13.79 
 … 
 E85 (85% ethanol):  9.85 
 E100 (100% ethanol):  9.0 

 
E10 therefore has a 3.5% difference in air/fuel ratio requirement than gasoline. This 

corresponds with the fact that E10 has an equivalently lower energy content than conventional 

gasoline (pure ethanol has a lower heating value of approximately 76,000 BTU/gal, while 

gasoline has a lower heating value of approximately 115,500 BTU/gal33). As described in 

Section 5.1, ERG’s recommended approach for determining ethanol content is to collect regional 

fuel ethanol content data in each area in which the main study is being conducted (or assume 

regional or national averages based on the season, if this assumption can be shown to be 

acceptable). 

Gasoline low- and mid-load operation (targeting stoichiometric) – Fuel economy 

under low- and mid-load operation of gasoline vehicles will be estimated as previously described 

for gasoline vehicles. It may be possible to obtain acceptably accurate fuel economy estimates 

using SAE J1979 mass air flow and lambda for vehicles that broadcast this information, but 

OEM-specific fuel injector rate information may be necessary to obtain accurate instantaneous 

fuel economy estimates for vehicles that do not broadcast mass air flow and lambda.  

Cold-start (open loop) – A focus of this pilot study was to determine method(s) for 

estimating accurate instantaneous fuel economy when a vehicle is in cold-start operation 

(immediately after a “cold” vehicle is turned on). During this time, if the ambient temperature is 

sufficiently low, the engine operates in “open loop,” which means feedback from the oxygen 

sensor is not available for tailoring the fuel to match the amount of air entering the engine. Also 

during this period of “blind” operation (no oxygen sensor feedback), the engine is generally 

programmed to provide a fixed air/fuel ratio that is richer than stoichiometric to improve cold 

                                                 
31 Kyung-ho, Ahn; Stefanopoulou, Anna; Jiang, Li; Yilmaz, Hakan;  Ethanol Content Estimation in Flex Fuel Direct 
Injection Engines Using In-Cylinder Pressure Measurements, SAE article 2010-01-0166, 2010.  
32 “Technical Assessment of the Feasibility of Introducing E15 Blended Fuel in U.S. Vehicle Fleet, 1994 to 2000 
Model Years”, Ricardo, Inc., Prepared for: Renewable Fuels Association, Sept 10, 2010. 
33 http://www.eia.gov/oiaf/analysispaper/biomass.html 
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drivability while the engine warms up.34 Since vehicles do not target stoichiometric operation 

and no real-time information is available regarding the actual air/fuel ratio being provided during 

this operation, again the use of OEM-specific queries of fuel injector rate may a way to achieve 

instantaneous fuel economy estimates for cold-start operation. If fuel rate is not available as an 

OEM-specific query, it may be possible to use fuel injector pulse width (this would also be an 

OEM-specific query) to estimate instantaneous fuel consumption. The relationship between fuel 

injector pulse width and fuel rate (as calculated using another method such as mass air flow 

collected during closed-loop, or warmed-up operation) would be needed to correlate fuel injector 

pulse width with fuel rate. This would also require some assumptions regarding fuel density and 

pressure during these various periods of operation. As another alternative, “target” air fuel ratios, 

such as those given by commanded equivalence ratio broadcast during cold-start operation, may 

also be used to estimate fuel rate during “blind” operation. Additional information on using 

commanded equivalence ratio is provided in Section 5.5.3. 

Wide-open throttle (enrichment) and deceleration (fuel cut-off) – Strategies for 

estimating instantaneous fuel economy during enrichment mode and fuel cutoff mode (open loop 

operation) may be similar to those for gasoline low- and mid-load operation. It may be possible 

to obtain acceptably accurate fuel economy estimates using SAE J1979 mass air flow and 

lambda (if lambda is broadcast during these non-stoichiometric operating modes), but emissions 

modeling with standard PIDs (as shown in Section 5.5.3) or OEM-specific fuel injector rate 

information is probably necessary to obtain accurate instantaneous fuel economy estimates for 

vehicles that do not broadcast mass air flow and lambda (or if lambda information is not 

broadcast during open-loop operation). Additional information on strategies to estimate fuel 

economy for various vehicle and technology types is provided in the following section. 

5.2.4 Summary of Measurement Strategies based on Vehicle and Fuel Types 

Table 5-5 provides a summary of data collection strategies that could be used in a full-

scale study. Rankings are provided for which strategy is believed to be the “best” approach for 

collecting data for each of the vehicle technology combinations. “Best” strategy rankings include 

consideration of cost and accuracy; rankings could vary depending on the suitability of the 

accuracy relative to the costs. A rank of “1” indicates we feel this is the best approach, a “2” 

indicates this is the second choice, and so on. These rankings could be revised as more 

information becomes available. For example, if PID 5E (standard fuel rate) is not found to have 

suitable accuracy, then another approach would be recommended.  

                                                 
34 http://autorepair.about.com/library/glossary/bldef-590.htm 
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As can be seen in Table 5-5, at this point in time, collection of PID 5E is the 

recommended approach for determining fuel consumption, if this PID is available for a particular 

vehicle and found to be acceptably accurate (SAE J1979 specifies a scaling factor of 0.05 

liters/hour per bit on PID 5E). If manufacturer-specific (enhanced) PIDs are required, ERG 

recommends that the fuel rate be acquired, if available (rather than fuel mass/volume per 

injection or injection duration). However, if fuel rate is not available, then fuel mass/volume per 

injection or injection duration may be acquired and correlated to fuel rate during stoichiometric 

operation calculated with the vehicle’s mass air flow (as shown in the table), or using injector 

calibration data. When using standard PIDs, fuel economy during non-stoichiometric operation 

may be estimated using O2 sensor data and/or calculated load (both standard PIDs). Other 

strategies are also recommended based on what we currently know about acquisition of the 

various parameters and accuracy of fuel consumption estimates using the various PIDs. These 

recommendations could change based on future research, such as that described in Section 5.6 

(Future Proposed Analysis).  
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Table 5-5.  Logging Strategies for Various Vehicle, Fuel, and Data Types35 
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Fuel Consumption          

Gasoline MAF with 
wide-band O2 sensor 

1 2  2      

Gasoline MAF with 
narrow-band O2 sensor 

1 2, 4, 5  2 3 4 5   

Gasoline MAP with 
wide-band O2 sensor 

1  5 5 2 3 4   

Gasoline MAP with 
narrow-band O2 sensor 

1  5 5 2 3 4   

Diesel 1 3, 4, 5 6 3, 4 2 3 4   

Other Data          

Hybrid battery state of 
charge 

       1  

A/C compressor on/off          1 
  

                                                 
35 Strategy rankings (1-5) could vary depending on cost and desired accuracy. These could also change based on 
results of future proposed analysis described in Section 5.6. 
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5.3 Datalogger Market Research and Selection 

Based on the requirements described above and listed in Table 5-1, ERG developed a list 

of criteria to be used to evaluate dataloggers for this study, and these are provided in Table 5-6. 

Unlike the general acquisition specifications listed in Table 5-1, Table 5-6 criteria were tailored 

according to our specific research objectives. For example, since “battery state of charge” and 

“air conditioning compressor status” are both parameters that would need to be acquired using 

enhanced PIDs, “battery state of charge” and “A/C compressor status” were replaced with the 

“Other enhanced PIDs” category shown in Table 5-6. The criteria shown in Table 5-6 were used 

to identify which dataloggers appeared to be the most suitable candidates for further evaluation 

during this pilot. Clarifying information regarding some of the parameters listed in Table 5-6 is 

given in the subsections that follow the table. 

5.3.1 Communication Protocol Capabilities 

OBD systems send data using various types of communication protocols. Several 

protocols were in use between 1996 and 2004, but between 2004 and 2008, all U.S.-based 

vehicles were phased into a common protocol, Controller Area Network, or CAN. Since any 

light-duty 1996 or newer vehicle could be selected for the main study, the datalogger to be 

selected must be able to communicate on CAN as well as the earlier “legacy” protocols. 

5.3.2 Enhanced PID Capabilities 

While quite a bit of information may be obtained from SAE J1979 standard PIDs, it was 

clear from the study requirements that additional information beyond that available from the 

standard PID datastream would likely be required. This includes information such as air 

conditioning compressor on/off status and hybrid battery state of charge as well as powertrain 

PIDs relating to fuel consumption for diesels, vehicles that do not broadcast mass air flow, and 

non-stoichiometric operation (when lambda is not available). The two primary costs associated 

with collection of enhanced PIDs are for purchase of the enhanced PID database from each 

vehicle manufacturer (or a central repository such as the Equipment and Tool Institute) and 

incorporation of the enhanced PID data into the datalogger’s software in order to allow the 

datalogger to request, capture, decode, and present the desired enhanced PID data for all vehicles 

in the fleet.  
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Table 5-6.  Datalogger Evaluation Requirements for In-Use Fuel Economy Study 

Acquisition Capabilities 
Date / Time Stamp 
Sleep and power-up on signal (i.e., no user input required) 
Adjustable acquisition rate (1 Hz to 2 Hz, variable by parameter) 
# of simultaneous parameters that can be acquired at 1 Hz, 2 Hz 
Can logger collect vehicle info? (i.e., Mode $09 VIN request) 
Can logger automatically establish connection with vehicle when key is turned on? 
Can logged data base exported to a *.csv or other type of delimited file? 

Communication Capabilities 
SAE J1850, PWM (Ford), VPW (GM) 
ISO 14230 (KWP 2000) 
ISO 9141-2 (KWP2000, Chrysler, Euro, Asia) 
ISO 15765 (11898) (CAN) 
Enhanced powertrain PIDs? (i.e., fuel rate for diesels and vehicles without MAF) 
Other enhanced PIDs? (i.e., hybrid battery, A/C status, climate control, cabin temp) 

Other Measurements 
GPS (and accuracy) 
Internal (cabin) temp 
Road Grade 
Accelerometer (2 Hz capability desired) 

Other Datalogger Specs 
Internal Memory (> 2 GB internal or removable SD card?) 
Can logger be configured for which standard PIDs to acquire, by vehicle?  
Method of configuration: (i.e., must each logger be individually set up, or can a 
configuration file be imported into the logger’s memory?)  
Does logger install directly onto the OBDII DLC or connect by cable? 
Size / weight 
Temp range 
Standby current draw (to ensure it will not drain batteries) 
Does logger have Wi-Fi, cellular, Bluetooth? 
Does logger have operating indicators (i.e., LED) that could indicate malfunction? 
What is the accessibility of the manufacturer and / or supplier? 

Other 
Other comments 
Order turnaround time 
Base cost 
Additional costs 
Total Cost 
Overall Assessment 
A = A very attractive candidate 
B = Perhaps suitable but not ideal 
C = Probably not suitable 
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5.3.3 Data Storage and Transmission 

Cellular transmission – Cellular transmission offers attractive benefits, but also results 

in some technical challenges and higher costs. Cellular coverage and signal quality will vary, and 

the system behavior must be designed for reliable data collection and transmission under these 

conditions. At a minimum, the data must be capable of being stored for a sufficiently long period 

of time, perhaps weeks, before it is reliably transferred to the central server. For cost and 

technical reasons, it may not be practical to stream the vehicle data continuously over an open 

data channel to an Internet server, so the system must packetize the data in nonvolatile memory 

and use any opportunity to transfer the stored data to the server, including after the vehicle is 

turned off. Off-hour transmission and use of binary language can reduce costs due to lower 

transmission rates and data volumes. While 2 Hz acquisition is desired for certain parameters 

(such as vehicle speed and acceleration), minimizing acquisition rates for other less-transient or 

less-critical parameters (such as engine coolant temperature) can reduce the amount of data that 

needs to be stored and transmitted.  

Cellular machine-to-machine (M2M) data collection has become very common in recent 

years. Both AT&T and T-Mobile allow their networks to be used for this purpose, with T-Mobile 

perhaps being the most aggressive in promoting this practice. Any carrier data plan can be used 

for M2M, including prepaid plans from AT&T and monthly plans from T-Mobile. These plans 

currently cost about $30 per month and provide much more data (5GB is typical) than would 

likely be required for a single month of data for a single vehicle. Third party service providers 

such as Raco Wireless provide cellular data plans which, while more expensive per byte 

(currently about $4.85/month for 25MB), cost less in many M2M applications that do not require 

large amounts of data per month. 

The use of M2M cellular communications also requires an Internet server programmed to 

accept, store, and present the data received from the fleet of cellular M2M data sources. Many 

companies that sell dataloggers offer this service, and there are other small companies that can 

also provide this service. The Internet server must be customized for the type and format of the 

data collected by the remote data sources. 

Wi-Fi transmission – The use of Wi-Fi as an option for data transmission was also 

considered for this study. For this option, the datalogger would be equipped with a Wi-Fi 

transmitter that could be used to transfer the data (again, in packets) to a local project server 

developed for this study. However, because of network security issues, hot spots (Wi-Fi 

receivers connected to the Internet) would need to be used in centralized study locations of 
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interest in order to periodically collect data from the each vehicle. Alternatively, participant’s 

home routers could be used as receivers. However, because of the broad geographic distribution 

of anticipated study vehicles and issues associated with establishing numerous Wi-Fi networks or 

connections, this option was not considered to be a feasible solution at this time.  

Onboard storage – Many dataloggers (including those using a SD card or a micro-SD 

card) can commonly store 32 GB or more of data. ERG’s preliminary assessment of memory 

requirements (1 to 1.5 GB of data for each vehicle over one year, depending on parameters 

selected and acquisition rates of each of the parameters) is well under the 32 GB limit of micro-

SD cards. However, one fundamental issue with onboard storage is the inability to remotely 

verify that valid data is being collected without somehow retrieving and downloading the data. 

Even if a datalogger has an indicator to show the vehicle operator if the logger is functioning, 

data acquisition problems can still occur undetected. Therefore, although onboard storage is 

feasible, it is highly preferable to use on-board storage with some form of data transmission.  

Using the criteria listed in Table 5-6, ERG performed market research to identify all 

dataloggers, software, hardware or components that could be used as a datalogging solution (or 

partial solution) for this study. ERG also investigated independently developing a datalogging 

system that would meet project needs. As described in Table 5-1, ERG’s general approach was 

to acquire as much data as possible from SAE J1979 standard PIDs from the vehicle’s ECU 

OBDII-port or devices integral to the datalogger (GPS, thermocouples, accelerometers). 

Enhanced PIDs or external sensors would also be required in order to acquire some of the data 

listed in Table 5-1.  

ERG performed market research to identify companies that offer products that may be 

suitable for use in the main study. Companies and products were identified using Internet 

research, information obtained from research during prior projects, information previously 

collected at conferences and others’ referrals of companies. Products from the following 

companies listed in Table 5-7 were evaluated and screened for suitability in this study. 
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Table 5-7.  Companies Whose Products were Evaluated 

ACR 
Agnik 
ANTX 
Auterra 
AutoEnginuity 
B&B Electronics 
Cloudcar 
Compact Instruments 
CONTROLTEC 
Corsa Instruments 
CSM 
Datron Technology 
Davis Instruments 
Dearborn Group 

Drew Technologies 
Ease 
eDAQ-lite 
Equipment & Tool Institute 
Fleetwatch 
Georgia Institute of Technology 
HEMData 
Hydro Electronic Devices 
Injectoclean 
Isaac Instruments 
iTds 
Linear Logic 
Networkfleet 
Ono Sokki 

Oxford Technical Solutions 
Persentech 
PLX 
RaceLogic 
ScanTool.net 
Sensors 
Si-Gate 
Solidica 
Squarrel 
Telargo 
Trimble 
Universal Tracking Technologies 
Vector 

 
Information was gathered on products offered by each of these companies to determine if 

any of them appeared to warrant additional evaluation. Those that did appear to warrant 

additional evaluation were added to a “short list” for evaluation using some or all of the criteria 

listed in Table 5-6. The following dataloggers were given this additional evaluation:  

 Auterra Dashdyno SPD 
 AutoEnginuity #ST06 plus expansion options 
 Cloudcar (MIT) 
 ControlTEC CT1000 
 Dearborn Group Gryphon 
 Drew Technologies CarDAQ 
 Drew Technologies / HEMData AVIT 
 HEMData DAWN Mini 
 LiveDrive i2d (iTds) 
 Persentech CVS43 
 Persentech CD 

 
Highlights of each of the dataloggers that were evaluated using some or all of the criteria 

listed in Table 5-6 are listed in Table 5-8. 
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Table 5-8.  Assessment of the Most Suitable Datalogger Candidates  

Datalogger 
Name 

Suitability for Use in Study Limitations of Use in Study Approximate Cost Score36 

Auterra Dashdyno 
SPD 

Appears to be a fairly well developed 
product, CAN and legacy protocols, 
GPS capable, analog and digital inputs, 
removable memory, affordable.  

Appears to have limited control of 
acquisition rate, the enhanced PIDs 
necessary for this study do not appear to be 
available, touch screen interface not ideal 
for this type of study. 

$300 base, plus 
$50/each mfr for 
enhanced PIDs 

B- 

AutoEnginuity 
#ST06 plus 
expansion options 

Collection of CAN and legacy protocols 
plus MANY enhanced PIDs. Fairly 
affordable. 

This appears to be a PC-based software 
solution rather than a stand-alone 
datalogger. Requires PC to operate. 

#ST06 is $250, plus 
$230 each for 
Chrysler and Honda 
modules 

B- 

Cloudcar (MIT) Reported to meet most of the project 
needs, open source flexibility. 
Requested but did not receive data 
samples, specification sheets, or 
additional info. 

Current form of logger does not appear to 
have legacy protocol support. ERG might 
be able to make these modifications.  

Not obtained C+ 

ControlTEC 
CT1000 

Appears to be a versatile unit with GPS, 
cellular, removable memory. Company 
has strong automotive background. 

Relatively costly and currently no legacy 
protocol support. Possibly more for OEMs 
and lab development.  

$2500 - $3000 base, 
data and 
communication plan, 
$150 - $200 / month. 
Future plans (2013?) 
for CT500 @ $1000 
base  

C 

Dearborn Group 
Gryphon 

Appears to be a versatile logger, auto 
on/off and configurable that can capture 
CAN and legacy protocols, with CF 
memory capability. 

 Relatively costly, possibly more for OEMS 
and lab development. Does not appear to 
have GPS. 

Logger and software 
was $3400 during 
prior survey. 

C 

Drew 
Technologies 
CarDAQ 

Appears fairly versatile, CAN and 
legacy protocols, GPS, large internal 
memory. 

Relatively costly, does not appear to have 
sleep mode or enhanced PID capability, 
system appears to require interface 
programming. 

$1900 C 

                                                 
36 A = a very attractive candidate, B = perhaps suitable but not ideal, C = probably not suitable 
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Datalogger 
Name 

Suitability for Use in Study Limitations of Use in Study Approximate Cost Score36 

Drew 
Technologies / 
HEMData AVIT 

Appears fairly versatile and rugged, 
CAN and legacy protocols, GPS, Wi-Fi, 
large internal memory 

Relatively costly, unit is 10” x 5” x 1” box 
and appears to require additional system 
development to meet study needs.  

From prior survey, 
$2300 excluding 
software and GPS 

C 

HEMData 
DAWN Mini 

Appears to offer most of what we need, 
small, plugs directly onto DLC. 
Provides fuel economy for MAF 
vehicles. Unit appears suitable for this 
type of study.  

Single units are relatively costly, but price 
drops for quantity purchases. No 
barometric altimeter. Currently no cellular 
(about 4 months). Currently no legacy 
(expected, but may be expedited for a fee). 

$1000 - $2300 based 
on volume discounts, 
see Table 6-3 

A- 

LiveDrive i2d 
(iTds) 

Appears to offer most of what we need, 
includes cellular and data service, very 
affordable. Barometric altimeter for 
road grade, reportedly provides 
instantaneous fuel economy for all 
technology types.  

Appears to be still undergoing 
development, does not mount directly onto 
DLC, appears to have limited control of 
acquisition rate, limited ability to acquire / 
modify standard PIDs, unable to review 
fuel economy estimates.  

$200, see Table 6-4 B 

Persentech 
CVS43 

Appears to be an autonomous device, 
SD card acquisition, CAN and legacy 
protocols, GPS, internal cellular, 
moderate price. 

Appears to have a touchscreen for user 
input, no enhanced PIDs. 

$800 C 

Persentech CD Appears to be an autonomous device, 
SD card acquisition, CAN and legacy 
PIDs, GPS, internal cellular, moderate 
price 

Does not appear to have cellular, 
accelerometer, barometric altimeter or 
enhanced PID capability. 

$500 B 



 

5-23 

Based on the short-list review of each of the eleven candidates, ERG selected two loggers 

for hands-on evaluation and testing: the HEMData DAWN Mini and the LiveDrive (iTds) i2d, 

which are shown below.  

 
 

A summary comparison of the features and functionality of the HEMData DAWN Mini 

and the LiveDrive (iTds) i2d loggers is provided in Table 5-9. Limitations of each of the loggers 

(with respect to requirements for this study) are shown in yellow shading. As noted in the table, 

not all of these features were verified by our testing. Observations arising out of our testing and 

review are summarized in the following section.  
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Table 5-9.  Comparison of i2d and DAWN Mini Reported Features 

Feature LiveDrive i2d  HEMData DAWN Mini 
auto sleep / power-up Yes Yes 
adjustable data acquisition rate Limited Yes 
Internal clock No Yes 
auto-establish connection Yes Yes 
Size and ease of installation Fair Good 
GPS Yes Yes 
accelerometer Yes Future37 
Internal thermocouple Not verified38 Future31 
on-board data storage Yes, 2 GB internal Yes, up to 32 GB card 
CAN protocols Yes Yes 
legacy protocols Not verified32 Future31 
Standard PID selection configurable Planned39 Yes 
enhanced PIDs (powertrain / other)  No May be added40 
Cellular data transmission Yes May be added33 
supplier accessibility Fair Good 
FE calculations from standard PIDs Not verified 32 MAF vehicles only 
FE estimates for all vehicle types Not verified 32 MAF gasoline only 
barometric altimeter Yes No 
Bluetooth Yes No 
 
5.4 Evaluation of HEMData Dawn and LiveDrive I2d Dataloggers 

ERG ordered both a HEMData DAWN Mini and a LiveDrive (iTds) i2d datalogger for 

evaluation in this study. Both units were received and were tested to evaluate their suitability for 

use in the study. A summary of each evaluation is provided below.  

5.4.1 LiveDrive i2d 

ERG was not able to thoroughly evaluate the LiveDrive i2d unit, as it was still 

undergoing development, and many of the features expected to be available were not currently 

functional on our unit during the period of evaluation. This unit reportedly calculates fuel 

economy for all vehicle types, including gasoline vehicles that report mass air flow, gasoline 

vehicles that do not report mass air flow, and diesel vehicles. It is not known how accurate the 

fuel economy estimates are or how precisely the i2d unit adjusts fuel economy estimates for non-

stoichiometric operation. Instantaneous fuel economy estimates were not provided by the unit 

                                                 
37 HEMData is currently making this modification with an estimated completion of September 2013. 
38 ITDS reports the i2d does have this functionality, but this was not verified during ERG’s testing. 
39 The i2d logger currently acquires a fixed set of standard (SAE J1979) PIDS, but ITDS reports longer-term 
development plans include adding the ability to allow the user to acquire additional standard (SAE J1979) PIDs of 
their choice (i.e., add lambda or fuel trim to the list of PIDs to acquire)  
40 See costs in Section 6.1. 
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ERG evaluated for this study, although overall average fuel consumption and CO2 estimates 

were provided on i2d’s website for the vehicles ERG tested. 

The i2d unit comes in two configurations, one with the GPS and cellular antennas 

mounted inside the datalogger housing (shown in the figure) and one in which the GPS and 

cellular antennas are a separate component connected to the datalogger housing with two small 

coaxial cables. This separate antenna configuration allows the antenna to be mounted in a 

separate location from the datalogger housing, which could result in better reception, but this 

also results in additional wiring that can become caught in the driver’s or passenger’s feet (or 

pedals) if not routed carefully. The datalogger housing with the internal antennas can also be 

mounted in a windshield, and this appeared to provide adequate GPS and cellular signal service. 

Although remote mounting by cable connection is not ideal, motorist installation may still be 

possible, as this is similar to mounting a radar or laser detector or mounting an aftermarket GPS 

system (remote box attached to a cable). The i2d unit appears to be a high-quality, well-

manufactured unit. No memory card is available (without opening the unit). As shown in the 

figure, the datalogger housing is relatively small, and attaches to the DLC with a cable. Some 

routing of the cable is required for installation. The red button on the datalogger may be used to 

align the X, Y, and Z coordinates of the 3-dimensional accelerometer after the logger has been 

installed.  

After our installation of the i2d logger, the unit did automatically power up, and it did 

switch into sleep mode when the test vehicles were shut down. The i2d also automatically 

established an OBD connection and collected OBD data, along with GPS, barometric pressure, 

and accelerometer data on the vehicles on which it was installed. The information that was 

collected was wirelessly broadcast (via cellular communication) to an Internet-based server, 

where the data could be viewed and downloaded. However, as this Internet server was an interim 

site used for product development, we were not able to verify the instantaneous fuel rates that 

will reportedly be provided on the production server. These loggers were only tested on vehicles 

with CAN communication protocol (so its ability to communicate with vehicles with the older 

legacy protocols was not evaluated).  

As Table 5-9 indicates, the ability of the user to adjust the acquisition rate of the i2d unit 

is limited. Although the acquisition rate can be adjusted, it is defined by the i2d server and is 

common to all units in order to ensure compatibility with the software running on the i2d server. 

The i2d logger has an internal timer (rather than a clock), and timestamps shown for each record 

of data correspond to the server time (when the information was received by the server) and the 

GPS time (at the moment the data was logged). Since GPS is not acquired at precisely 1 Hz, 
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there is a possibility of two records of data having the same time stamp, or two consecutive lines 

of data having time stamps more than one second apart. I2d estimates a deviation of 

approximately 30 seconds over a 24-hour period. A revised version of the i2d logger with an 

internal clock is planned, and in the future it may be possible to adjust the acquisition rate, by 

PID, to optimize data acquisition.  

The i2d unit collected and reported several standard SAE J1979 PIDs, including engine 

RPM and vehicle speed, engine load and throttle position, mass air flow, intake manifold 

absolute pressure, intake air and coolant temperatures and barometric pressure. ERG was not 

able to modify this list of PIDs or select additional PIDs (such as oxygen sensor voltage, lambda 

or fuel trim) to acquire. I2d reported future development plans including modification of the 

webserver and i2d firmware to allow the user to select additional PIDs for collection, although 

the timeline for these modifications was not provided. I2d also indicated that the collection of 

additional PIDs could slow the OBD acquisition rate to slower than 1 Hz. It may be possible to 

reduce the acquisition rate of some PIDs (such as engine coolant temp) to increase capacity of 

other PIDs at a higher rate.  

Because of these limitations, we were not able to further evaluate the i2d logger during 

this pilot, but we do feel that this system is a promising candidate for this type of study once 

development has progressed. Additional review of this system is warranted for use in any follow-

up study. 

5.4.2 HEM Data DAWN Mini 

ERG has prior experience with HEM Data data acquisition systems and also the DAWN 

Mini logger from prior projects. In addition, we are aware of a number of other organizations 

that use HEM Data products, including the U.S. Environmental Protection Agency, the U.S. 

Department of Energy, the U.S. Army, the California Air Resources Board, Toyota, ExxonMobil 

and others. HEM Data has specific experience collecting and analyzing the type of data 

necessary for this study, such as instantaneous fuel economy using both standard SAE J1979 

PIDs (with correction for deviation from stoichiometric for vehicles that report lambda) and also 

fuel rate using enhanced OEM-specific PIDs. HEM Data also has experience in collecting hybrid 

vehicle battery state of charge (using enhanced PID data acquisition as well as external input 

sensors).  

As shown in the figure, the DAWN Mini unit is small and plugs directly onto the 

vehicle’s OBDII DLC. A micro-SD card is inserted into the front of the logger (the end opposite 

the DLC pins which cannot be seen in the figure). The advantage of a logger that mounts directly 
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onto the vehicle’s DLC is that no connecting cable to datalogger routing is required. This is 

particularly advantageous in vehicle test programs in which the participants are responsible for 

mounting their own dataloggers, as this eliminates the problem of hanging wires getting caught 

up in the driver’s feet, brake, accelerator, or clutch pedals. However, DAWN’s micro-SD card 

does extend beyond the logger, and it is possible to dislodge the card during datalogger 

installation (or possibly by a foot inadvertently hitting the logger). This could result in an 

inability of the logger to record the vehicle’s OBDII data and a loss of study data. HEM Data did 

indicate that it is possible to obtain a unit with only internal memory (no external micro-SD 

card). Although no price quotes were provided, HEM Data indicated that a revised design with 

internal memory would result in a reduced cost.  

The unit ERG acquired for this evaluation performed as indicated in Table 5-9. The 

logger is equipped with an accelerometer and an internal thermocouple, although the current 

version of firmware does not support these two features (the unit is being upgraded to receive 

this functionality by the fall of 2013). Also, as shown in this table, the current version of the 

DAWN Mini does not have the capability of collecting data on any of the legacy protocols 

(although the unit is being upgraded to receive this functionality by the fall of 2013 as well).  

The DAWN Mini provided instantaneous fuel economy estimates for vehicles that 

broadcast mass air flow. These instantaneous fuel economy estimates were based on gasoline (no 

oxygenate) and were adjusted for non-stoichiometric operation for vehicles that broadcasted 

lambda (output from a wide-band oxygen sensor). For vehicles with narrow-band oxygen 

sensors, the fuel economy estimates were based on the assumption of stoichiometric operation 

(no lambda correction was applied). The DAWN Mini does allow the user to fully configure 

which standard (SAE J1979) PIDs to acquire, but the base DAWN Mini does not include the 

capability of collecting enhanced PIDs (i.e., for battery state of charge and fuel rate on non-MAF 

vehicles). Costs for enhancing the base unit with enhanced PID collection capability for some 

vehicles are provided in the cost section of this report. Due to lack of availability of data from 

some vehicle manufacturers, enhanced PID data collection is not currently possible for all on-

road vehicles, and is limited to those vehicles shown in the cost tables. HEM Data has experience 

in collecting this data from Ford and Toyota, and provided a sample of enhanced Toyota data 

(fuel rate) to ERG to evaluate against fuel rates calculated using standard SAE J1979 PIDs. This 

analysis is provided in Section 5.5.2. 

Since each PID must be requested by the datalogger each time data is required, delays in 

receiving the response and also in sending consecutive requests could cause a slow acquisition 

rate. During testing, ERG did not verify the HEM Data DAWN’s messaging rates, but HEM 
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Data reports the DAWN’s PID requests are broadcast at a frequency determined by the selected 

acquisition rate. For example, if 20 PIDs are selected at an acquisition rate of 1 Hz, each PID 

request is broadcast at 0.05 second intervals, so for the 20 PIDs acquired at this rate, the total 

delay would be approximately 950 ms (plus the response delay for the final PID), and the cycle 

would resume again (PID 1 request) at 1000 ms (1 second) after the prior sequence of requests. 

In this scenario, we would expect to maintain a 1 Hz acquisition rate. Similarly, for a 2 Hz 

acquisition rate, each PID request would be broadcast at 0.025 second intervals, so the total delay 

would be approximately 0.475 ms (plus the response delay for the final PID), and the cycle 

would resume again (PID 1 request) at 0.5 seconds after the prior sequence of requests (a 2 Hz 

acquisition rate). HEM Data testing on a late model vehicle showed a response delay generally 

ranging between 2 and 9 ms. Different vehicles may have different response rates, and critical 

operation systems will have a priority on some vehicle networks, so the actual response rates 

could vary based on total traffic on the network. HEM Data reports most vehicles networks 

(including legacy protocol networks) should communicate at an acceptable rate. GM’s SAE 

J1850 VPW is 10 kilobits per second and should accommodate 20 PIDs at 1 Hz, Ford’s SAE 

J1850 PWM is 40 kilobits per second, but ISO 9141 (Chrysler, European and Asian vehicles) at 

3 kilobits/second is relatively slow. Additional testing may be required in order to ensure that a 

suitable acquisition rate is possible with these vehicles, and for these vehicles, the number of 

PIDs to be acquired should be minimized in order to maintain a 1 Hz acquisition rate. 

The HEM Data DAWN’s GPS acquisition rate is currently set at 5 Hz, although it can be 

set anywhere from 1 to 10 Hz in the firmware (this is a manufacturer adjustment). The DAWN 

datalogger draws 80 mA when active, and standby current drain is approximately 1 mA. 

During testing, the HEM Data DAWN was unobtrusive and stayed attached to the DLC 

on all the tests that were performed (although the metal retention clip that helps keep the logger 

attached to the DLC was pulled off and lost during dynamometer testing, which could be a 

problem in a full-scale field study). As previously noted, there is a potential for the micro SD 

card to become dislodged during installation or use (if the card is knocked), as the card is 

retained only by friction and does not lock in place. However, HEM Data stated a system design 

modification could be made, if desired, to provide a logger with only internal memory (at a 

reduced cost from the current unit). Also, the DAWN Mini’s DLC pins appear to consist of 

unplated copper, which could lead to galvanic corrosion over a long duration study, although 

HEM Data reports no such issues in other similar studies (over a year of data acquisition) they 

are currently conducting. During testing, it was noted that due to the datalogger’s heat 

generation, the internal logger temperature reading that would be recorded by the logger would 
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not represent the cabin temperature, and therefore might not provide a reliable signal for air 

conditioning on/off status.  

Because of the accuracy issues associated with calculating fuel rates for non-MAF and 

diesel vehicles, the base HEM Data DAWN Mini only provides fuel rates for vehicles that 

broadcast mass air flow. It may be possible to collect enhanced PIDs to calculate fuel rate for 

some non-MAF and diesel vehicles, or alternatively it may also be possible develop fuel 

economy estimation methodologies for non-MAF and diesel vehicles using standard SAE J1979 

parameters, as described in Sections 5.6.1 and 5.6.3.  

The current version of the DAWN Mini does not offer cellular capability, but HEM Data 

reports this is being added and should be available within a few months. The cellular service plan 

could be established with the carrier of choice, and HEM Data offers an Internet-based server 

that could be used as a data repository for a one-time setup fee. The DAWN Mini can reportedly 

obtain different parameters at different rates (i.e., 2 Hz for vehicle speed and 0.1 Hz for engine 

coolant temperature), although this was not verified during our testing. During discussions 

regarding this study, HEM Data offered several suggestions to reduce cellular transmission costs 

(these are strategies HEM Data is applying in one of their current studies): 

 Acquire PIDs at differing rates (some PIDs such as speed or acceleration may be 
needed at 2 Hz, while other PIDs such as ambient temperature may be acquired at 
0.1 Hz, for example) 
 

 Transmit data in binary language, rather than text language, to reduce data size 
 

 Transmit data during off-hours, such as between 2 a.m. and 5 a.m.  
 

Overall, with some modifications (such as addition of legacy protocol capability, 

accelerometer data, and cellular communications) the HEM Data DAWN appeared to be a 

suitable unit for use in a full-scale fuel economy study. It is quick and easy to configure, offers 

configuration flexibility, and is simple to install and use. With the logger installed on the 

vehicle’s OBDII DLC underneath the dash, there is a potential for loss of a GPS signal, although 

review of the data did show a GPS signal was generally available. Integral LEDs do indicate 

when the unit is active and in standby mode, although the exposed micro-SD card does pose a 

risk of loss of data without the user’s knowledge (as stated previously, HEM Data indicated a 

future version of the logger could be provided with only internal memory, if desired). Inclusion 

of cellular data collection capability could help mitigate that risk as incoming data could be 

regularly monitored. Although this unit is small enough to be unobtrusive for most applications, 

it is possible that some vehicles will have DLCs located in locations that expose the DAWN 
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Mini, or prevent a vehicle’s DLC cover to be in place when the datalogger is installed. However, 

this will be the situation with any datalogger, including cabled units. 

5.5 Datalogger Validation 

After datalogger selections were made, the dataloggers were validated using several 

methods: 

 In-use functionality testing was performed to verify the overall functionality of 
the systems. A summary of observations from this testing is provided in Section 
5.4, Evaluation of HEM Data DAWN and LiveDrive i2d Dataloggers. 
 

 Second-by-second fuel economy results from portable emissions measurement 
system (PEMS) data from the Kansas City Light-Duty Vehicle Study41 were 
compared with fuel economy estimates from paired OBDII data (standard SAE 
J1979 MAF / fuel trim) from the same study, results are provided in Section 5.5.1. 
 

 Second-by-second fuel economy estimates from standard SAE J1979 parameters 
(MAF/wide-band oxygen sensor lambda data) were compared with paired fuel 
economy estimates calculated using OEM-enhanced fuel injector fuel rate data 
from the same test, results are provided in Section 5.5.2. 
 

 Second-by-second fuel economy results from dynamometer testing were 
compared with fuel economy estimates from paired OBDII data (standard SAE 
J1979 MAF / narrow-band oxygen sensor data) collected over the U.S. EPA 
standard city cycle, the U.S. EPA standard highway fuel economy cycle and the 
US06 aggressive drive cycle. This testing was performed on a 2009 Saturn GDI 
for this study, and the results are presented in Section 5.5.3.  

 
These validation methods were applied to the following types of vehicles: 

 Port-fuel injected gasoline vehicles (narrow-band and wide-band oxygen sensors), 
Section 5.5.1 and Section 5.5.2 
 

 A gasoline direction injection vehicle (with a narrow-band oxygen sensor), 
Section 5.5.3 
 

 A hybrid vehicle (non-plug-in with a wide-band oxygen sensor), Section 5.5.2  
 

                                                 
41 S. Kishan, A.D. Burnette, S.W. Fincher, M.A. Sabisch, W. Crews, R. Snow, M. Zmud, R. Santos, S. Bricka, E. 
Fujita, D. Campbell, P. Arnott, “Kansas City PM Characterization Study, Final Report,” prepared for U.S. 
Environmental Protection Agency, prepared by Eastern Research Group, BKI, NuStats, Desert Research Institute, 
October 27, 2006, http://www.epa.gov/oms/emission-factors-research/420r08009.pdf. 
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Validation was performed under various conditions, including low and mid-throttle 

closed-loop (engine hot) operation, cold-vehicle operation (in which the vehicle operates in 

“open loop” mode), and high throttle operation in which the vehicle has a tendency to enter 

enrichment mode. Additional details and results of this testing are provided in the following 

subsections. 

5.5.1 Validation using Kansas City PEMS Data 

A subset of 19 test vehicles from the Kansas City Light-Duty Vehicle Study was used for 

this validation. The PEMS system used in this study recorded some of the standard SAE J1979 

OBDII parameters along with the emissions and instrumentation data. Data was obtained from 

both on-road PEMS testing and also dynamometer testing over the LA-92 test cycle. Exhaust 

mass flow rate was collected using a flowmeter, so PEMS emission rates were available on both 

a concentration basis and also a mass basis for comparison with emission rates calculated using 

the OBDII data, which was recorded by the PEMS datalogging system. Mass air flow and 

manifold absolute pressure were both collected when available, along with other common OBDII 

parameters such as engine RPM, throttle position, engine coolant temperature, and intake air 

temperature. Although fuel trim was collected (bank 1 only), neither oxygen sensor nor lambda 

data are available, which limits our ability to adjust OBDII-based fuel economy estimates for 

non-stoichiometric operation. For this reason, the Kansas City data was primarily used to 

evaluate the feasibility of using fuel trim to tailor fuel economy estimates for non-stoichiometric 

operation and to determine the deviation of OBDII-based fuel economy estimates when 

assuming stoichiometric operation with those measured by PEMS, in particular during cold-start 

when vehicles may be operating in open-loop enrichment and also under high load, when 

vehicles may be operating in enrichment.  

The 19 selected vehicles had valid data for the OBD mass air flow. The data for these 

vehicles was collected from December 2004 to April 2005. There were about 85,000 seconds of 

operation when the engine was on and the OBD and PEMs units were collecting data. We 

calculated the fuel flow using OBD parameters using the measured mass air flow, an assumed 

specific gravity for the fuel, and an assumed stoichiometric air/fuel ratio. Since these vehicles 

had narrow-band oxygen sensors but the output of the sensors was not in the dataset, these OBD 

calculations assume that lambda was 1. The PEMS unit reported fuel flow rate based on 

measured emissions concentrations and measured exhaust mass flow rate.  



 

5-32 

The fuel flow rate calculated from OBD information was compared with the fuel flow 

rate calculated from the PEMS measurements. For this comparison, we may regard the PEMS 

flow rate as the reference value.  

Figures 5-2 and 5-3 compare the OBD- and PEMS-calculated fuel flows for two of the 19 

vehicles in the dataset. The data times series were time aligned during the original QC-checking 

of the data immediately after data acquisition in 2005. These plots show that there is good 

agreement between the fuel flows for most of the points in the data. It should be noted that the 

line of agreement on these plots is not a one to one line. The ratio of the OBD calculated fuel 

flow to the PEMS calculated fuel flow is about 8 or 12. The fuel flow values calculated from the 

OBD data are clearly wrong since fuel flow at idle is typically about 0.5 mL/s. We believe this is 

due to a problem in the reporting of the units, which can be investigated and solved to show a 

one to one agreement.  

Figure 5-2.  Comparison of OBD-Calculated Fuel Flow with PEMS-Measured Fuel 
Flow for Vehicle 1 (2003 Ford Explorer 4.0L) 

 
 

An examination of the engine operating data indicated that most of the data on the plots is 

not from driving in enrichment. Even though the fuel flow calculations agree for much of 
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operation of the vehicles, there is a scatter of points that do not lie on the line of agreement. 

Questions arise about whether the off-the-trend points are associated with enrichment or 

something else.  

To further investigate, we examined events where the vehicle might be operating in 

enrichment. We first identified the times of engine start. This was done by looking for places 

where the oxygen went from 21% to around 0% while the carbon dioxide went from 0% to 

around 15%. After highlighting the vehicle starts, we further subsetted the data by keeping only 

the contiguous open loop operation that sometimes occurred immediately after an engine start. 

Open loop operation was identified by the OBD fuel trim parameter set exactly to zero 

immediately after engine start. Once the fuel trim diverged from 0, the vehicle was in closed loop 

operation.  

Figure 5-3.  Comparison of OBD-Calculated Fuel Flow with PEMS-Measured Fuel 
Flow for Vehicle 2 (2004 Toyota Corolla 1.8L) 

 
 

Once the open loop starts were identified, we looked at the coolant temperature at the 

start to separate the open loop operation into “cold starts” (coolant temperature < 66F), and “hot 

starts” (coolant temperature > 66F). 
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After doing this subsetting of the data, there were only about 1,000 seconds of vehicle 

operation left for 14 of the 19 vehicles (5 vehicles did not have any open loop start operation 

points). Plots of the ratio of the OBD-calculated fuel flow to PEMS-measured fuel flow versus 

OBD parameters that might be associated with enrichment operation: throttle position, 

acceleration, engine load, and ambient temperature. None of the plots produced any convincing 

trends that would explain large disagreements between PEMS and OBD fuel flow. Part of the 

reason that we did not see a convincing trend was that the data was sparse with the 1,000 seconds 

of data dispersed among 14 test vehicles.  

5.5.2 Standard SAE J1979 PID vs. OEM-Enhanced PID Validation 

HEM Data provided ERG paired standard SAE J1979 OBDII data along with fuel 

injector volume (an enhanced PID) data collected from a 2012 Toyota Camry with a 2.5L 4-

cylinder engine equipped with a mass air flow sensor and a wide-band oxygen sensor. 

Specifically, this PID is reported as the volume (mL) of one cylinder's last 10 injections. HEM 

Data converted this value to a second-by-second fuel rate by multiplying by the number of 

cylinders, multiplying by the RPM/(2*10) (2 since it's a 4-stroke and "10" because of the prior 

"10 injection" cumulative), and converting minutes to seconds. Therefore, at engine speeds 

greater than 600 rpm, this calculation methodology assumes the total fuel consumed over the last 

second of operation is proportional to the last 10 injections, which will incur an error. 

Approximately 53 minutes of on-road driving data was collected for a 2012 Toyota Camry, 

including a “cold start”, although the coolant and ambient temperatures were 23C and 25C at 

startup and the engine transitioned to closed loop nearly immediately after the vehicle was turned 

on (and before driving). ERG was not able to obtain additional cold-start or high-throttle 

enrichment data beyond what was originally provided for this analysis. In addition, HEM Data 

also provided to ERG 14 minutes of similarly paired data from a 2011 Toyota Prius with a mass 

air flow sensor and a wide-band oxygen sensor. For both these vehicles, ERG compared the fuel 

consumption calculated using each vehicle’s mass air flow sensor and wide-band oxygen sensor 

with the fuel injector-based fuel consumption rate provided by HEM Data. Since these vehicles 

were equipped with wide-band oxygen sensors, no narrow-band oxygen sensor data was 

available for this analysis. However, ERG also compared fuel economy using mass air flow 

sensor data and assuming stoichiometric combustion with fuel injector-based fuel consumption 

rates provided by the HEM Data datalogger. This latter comparison was performed to provide an 

estimate of accuracy that might be obtainable with these vehicles if they were narrow-band / 

MAF vehicles. 
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2012 Toyota Camry comparison – Figures 5-4(a) – (c) show time-series plot 

comparisons of the fuel consumption (mL/s) calculated using the Toyota Camry’s mass air flow 

sensor and wide-band oxygen sensor with the fuel-injector-based fuel consumption rate provided 

by HEM Data. These plots present the full 53 minutes of operation, broken into roughly 17-

minute segments. The fuel-injector fuel rate was calculated by HEM Data as previously 

described. Figure 5-5 shows a parity plot which compares the fuel rate computed using MAF and 

wide-band oxygen sensor air/fuel ratio (x-axis) with the injector fuel rate (y-axis). On this plot, 

the 1:1 line is shown in red. Figures 5-6 (a) – (c) and 5-7 show the same data without the wide-

band lambda adjustment (as an estimate of results that might be obtained with a narrow-band 

oxygen sensor for this vehicle). Figures 5-8 and 5-9 provide a comparison between the corrected 

(with lambda) and the uncorrected (no lambda) fuel rates calculated with mass air flow for the 

2012 Toyota Camry.  
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Figure 5-4 (a)-(c).  MAF and Injector Fuel Rate Comparison (with Lambda Adjustment) for 2012 Camry  
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Figure 5-5.  MAF-Derived (with Lambda Adjustment) vs. Injector Fuel Rates for 2012 Camry 
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Figure 5-6(a)-(c).  MAF and Injector Fuel Rate Comparison (without Lambda Adjustment) for 2012 Camry  
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Figure 5-7.  MAF-Derived (without Lambda Adjustment) vs. Injector Fuel Rates for 2012 Camry 
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Figure 5-8 (a) – (c).  Lambda-Corrected vs. Uncorrected MAF Fuel Rates for 2012 Camry 
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Figure 5-9.  Scatter-Plot Comparison of Lambda-Corrected and Uncorrected MAF Fuel Rates for 2012 Camry 
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Table 5-10 summarizes results from the MAF-based fuel rates and the injector-based fuel 

rates over the 53-minute drive. Values are provided with wide-band oxygen sensor lambda 

corrections (with ) and also without the lambda correction (no ) to provide an estimate of 

results that would be obtained for a this vehicle if it were equipped with a narrow-band oxygen 

sensor.  

Table 5-10.  Comparison of Injector vs. MAF-Based Fuel Consumption Estimates 
for 2012 Toyota Camry 

Parameter MAF-based value Injector-
based value 

Comments 
With  No  

Cumulative 
fuel used 

3816 mL 3784 mL 4324 mL 

Cumulative -adjusted MAF fuel rate is 508 
mL (13.3%) lower than the injector-based 
value, the uncorrected is 540 mL (14.3%) 
lower (using the formula |MAF-FI|/MAF). 

 
As can be seen in Figures 5-4 through 5-7, numerous deviations were seen between 

MAF-derived fuel rates and the injector-derived fuel rates. As shown in Table 5-11, for the entire 

test, the average of the differences between the MAF fuel rate (with wide-band oxygen sensor 

adjustments) and the injector fuel rate was 0.3396 mL/s, the standard deviation of the difference 

in fuel rates was 0.5631 mL/s, and the maximum difference between the two was 9.6526 mL/s. 

The average percent difference between the MAF fuel rate and the injector fuel rate was 151%, 

and the maximum percent difference between the two was 51,385% (injector rate was about 514 

times higher than MAF rate). This was during a period when the MAF rate was very near zero 

but the injector rate was around 3.4 mL/s. This information is summarized in Table 5-11. These 

values were calculated using the differences between each of the 1 Hz individual data points in 

the dataset. For this data, the average (cumulative) differences were much smaller than the 

instantaneous differences (approximately 14% vs. 150%) because these percentages were 

calculated using absolute values, and the difference of the sums was very different than the 

average of the individual differences. In this case specifically, the cumulative error estimate 

(14%) is the absolute value of the difference of the cumulative rates, while the instantaneous 

error estimate (150%) is the average of the absolute values of the individual instantaneous fuel 

rate differences (for each second of operation). For this instantaneous error estimate, each second 

of operation is weighted equally, and the absolute value of many of these instantaneous errors are 

quite large (as shown in Table 5-11), since the percentage differences are very large at low flow 

rates. This effect is eliminated when comparing overall cumulative fuel rates. As an example, 

consider the values shown in Table 5-12, taken from the Camry data. 
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Table 5-11.  Summary of Differences in MAF-Based and Fuel-Injector-Based Fuel 
Rates for 2012 Toyota Camry 

Parameter Fuel Rate 
|MAF – FI| 

Relative 
|MAF-FI|/MAF 

Fuel Rate 
|MAF – FI| 

Relative 
|MAF-FI|/MAF 

With  Adjustment Without  Adjustment 
Average of the differences between 1 Hz 
MAF-based and injector-based fuel rates 

0.3396 
mL/s 

151 % 0.3292 
mL/s 

142 % 

Standard Deviation of the differences 
between 1 Hz MAF-based and injector-
based fuel rates 

0.5631 
mL/s 

2215 % 0.5610 
mL/s 

2202 % 

Maximum difference between 1 Hz MAF-
based and injector-based fuel rates 

9.6526 
mL/s 

51,385 % 9.6255 
mL/s 

51,084 % 

Minimum difference between 1 Hz MAF-
based and injector-based fuel rates 

0.0 mL/s 0 % 0.0 mL/s 0 % 

 
Table 5-12 Example Illustration of Percentage Differences Between Cumulative 

and Instantaneous Fuel Rates 

Data/Time Stamp MAF Fuel Rate 
(mL/s) 

Injector Fuel Rate 
(mL/s) 

Absolute Percent 
Difference 

698 0.8341 1.141 37% 
699 1.3976 0.9904 29% 
700 0.3437 1.0968 219% 
701 4.1015 1.3801 66% 
702 4.8037 5.0034 4% 
703 4.5064 5.062 12% 
704 0.6688 3.8401 474% 

    
Cumulative (mL) 16.656 18.514  

Average Instantaneous Percent Difference 120 % 
Average Cumulative Percent Difference 11 % 

 
As shown in Tables 5-10 and 5-11, differences exist between the MAF and injector-based 

fuel rates. Review of regions of the plots in Figure 5-4 (a) – (c) reveals times of operation when 

these two estimates differ the most. ERG evaluated the MAF-based and injector-based fuel rates 

to determine the source of the discrepancy. In general, some reasons for these discrepancies 

could include: 

 Differences in alignment of the signals – ERG performed an analysis to evaluate 
alignment of the various signals used in this analysis, and determined that all 
signals were adequately aligned within 1 Hz (the acquisition rate of this data). 
However, as the MAF sensor, fuel injector and pre-cat oxygen sensor are at 
different points in the engine’s flow stream, some sub-second misalignment could 
occur between these three signals and would vary depending on engine speed and 
flow rate. This would probably be most evident during transient operation. 
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 Signal and estimation errors – The OBD variables used for fuel rate 
determination may have measurement errors, including errors in the measurement 
of mass air flow by a hot wire anemometer (including the effect of humidity), 
oxygen content by a wide-band oxygen sensor and even fuel injector flow rate 
(including injector flow rates that are estimated based on injector durations and 
fuel system pressures). The signal response rates of various sensors (such as mass 
airflow sensors and oxygen sensors) will determine the vehicle’s ability to capture 
transient spikes. In addition, using the cumulative of 10 injections for one cylinder 
to project total flow for all cylinders over one second will produce some error 
from differences in cylinder flow rates and averaging injection volumes.  

 Differences in system flow and response rates – In addition to the measurement 
sensor response rates described above, mass air flow and fuel injector rates will 
produce very different signals due to how quickly values for these variables can 
actually change in an engine. Differences in the rate of change in mass air flow 
vs. injector fuel rate during transients will naturally result in discrepancies 
between these two variables during periods of acceleration or deceleration. This 
may be increased when using “10-injection cumulative” for estimating fuel 
injector rates. 

 
ERG categorized the discrepancies identified in the 53 minutes of Camry data into 5 

different types: 

 Discrepancy Type 1:  Injector fuel rate spike (0.3% of data points) 
 Discrepancy Type 2:  MAF fuel rate spike (0.4% of data points) 
 Discrepancy Type 3:  Injector fuel rate higher than MAF fuel rate over multiple 

points, (13.7% of data points) 
 Discrepancy Type 4:  Injector fuel rate lower than MAF fuel rate over multiple 

points (0.2% of data points) 
 Discrepancy Type 5:  Injector and MAF fuel rates differ during transients (3.0% 

of data points)  
 

As can be seen, discrepancy type 3 accounts for the majority of discrepancies between 

the two fuel rates (discrepancy type 3 accounts for nearly 80% of the differences between the 

two fuel rates). The following are examples of the five different categories of discrepancies seen 

in the MAF vs. injector fuel rate for the Toyota Camry, including an assessment of the source of 

error for discrepancy type 3.  

Discrepancy Type 1 (Injector fuel rate spike) – This type of discrepancy is a single 

point (or two) in which the injector- derived fuel rate is much higher than the MAF-derived fuel 

rate. An example of a few of these points is provided in the plot and table below. As RPM is a 

factor in the calculation of injector fuel rate, the RPM line does track the injector fuel rate line. 

ERG did not pinpoint the source of this discrepancy, although the same phenomenon causing 

discrepancy type 3 could be responsible for discrepancy type 1.  
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Time 
(s) 

RPM 
(rpm) 

Speed 
(km/hr) 

Load 
(%) 

Throttle 
(%) 

MAF 
(g/s) 

Lambda MAF Fuel 
Rate 

(mL/s) 

Injector 
Fuel Rate 

(mL/s) 

Discrepancy 
Type 

24 1020 3 34 18 7.6 1.04 0.699 0.749  
25 1020 3 34 18 7.6 1.04 0.699 0.749  
26 1576 4 38 21 16.2 0.90 1.721 3.032 1 
27 1586 11 38 20 14.3 1.05 1.300 1.240  
28 1817 13 50 23 21.5 1.03 1.984 1.790  
29 2217 17 42 23 22.9 0.99 2.191 2.495  
30 2405 22 38 23 23.2 1.01 2.195 2.134  
31 1929 24 48 24 22.4 0.97 2.197 2.384  
32 1921 28 46 24 24.3 1.00 2.331 2.257  
33 1941 30 53 25 25.9 0.95 2.589 2.997 1 
34 1963 34 51 24 25.0 1.00 2.379 2.361  
…          
56 1571 0 49 22 16.2 0.93 1.665 1.309  
57 1870 5 69 27 30.1 1.01 2.839 2.790  
58 2253 13 55 25 28.6 0.99 2.746 3.389 1 
59 5248 44 59 24 25.3 1.04 2.323 11.143 1 
60 3292 47 87 60 69.4 1.00 6.638 6.903  
61 3292 47 87 60 69.4 1.00 6.638 6.903  
62 3292 47 87 60 69.4 1.00 6.638 6.903  
 

Discrepancy Type 2 (MAF fuel rate spike) – This type of discrepancy is just a single 

point (or two) in which the MAF-derived fuel rate is much higher than the injector-derived fuel 

rate. An example of this is provided in the plot and table below. As seen in the table, these MAF 

spikes could be a result of a highly transient throttle “blip” (1-second jump in load and throttle 

position) not fully captured by the injector fuel rate estimate. 
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Time 

(s) 
RPM 
(rpm) 

Speed 
(km/hr) 

Load 
(%) 

Throttle 
(%) 

MAF 
(g/s) 

Lambda MAF Fuel 
Rate 

(mL/s) 

Injector 
Fuel Rate 

(mL/s) 

Discrepancy 
Type 

470 2255 26 60 27 32.6 0.99 3.132 2.931  
471 2223 33 62 28 33.7 1.00 3.210 3.341  
472 1912 38 72 30 32.8 1.03 3.044 3.068  
473 1549 54 93 66 56.3 1.02 5.271 0.382 2 
474 1500 53 11 16 4.0 1.23 0.312 0.370  
475 1500 53 11 16 4.0 1.23 0.312 0.370  

          
487 806 8 20 16 4.1 0.92 0.422 0.432  
488 789 7 20 16 4.1 0.92 0.421 0.423  
489 1083 7 152 26 35.6 0.94 3.598 0.549 2 
490 1413 9 25 17 7.7 1.01 0.728 1.857  
491 878 11 17 16 4.2 0.99 0.405 0.556  
 

Discrepancy Type 3 (Injector higher than MAF over multiple points) – Discrepancy 

type 3 was typically characterized by the injector fuel rate failing to track a drop in the MAF fuel 

rate, as shown in the plot and table below. Discrepancy type 3 deviations dominated the 

differences between MAF and injector fuel rates (nearly 80% of the differences between the two 

fuel rates were discrepancy type 3). Also, these deviations appeared to be systematic bias, rather 

than spurious points (such as MAF or injector fuel rate spikes) or delays during transients 

possibly due to signal rise and fall rates. 

During discrepancy type 3 deviations, nearly all (89%) of the observations occurred at 

throttle positions of less than 17%. The minimim throttle position seen in our data was 15%, so 
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this is essentially a closed throttle, which could indicate an inaccuracy in the data being reported 

from the OBD system, or this could be intentional by the vehicle manufacturer to represent 

throttle required for engine operation (including accessory loads) without accelerator pedal 

depression. SAE J1979 states “Throttle position at idle usually indicates greater than 0%, and 

throttle position at wide open throttle usually indicates less than 100%”42. During these times 

with type 3 discrepancies, the following was observed:  

 Throttle was usually less than 17%, indicating the throttle was closed  
 The average mass air flow was 4 g/s 
 The average lambda was 1.2 - this lean air/fuel ratio supports that the throttle was 

closed, as lean air/fuel mixtures generally only occur during deceleration fuel cut 
 The average calculated injector fuel rate was 0.9915 mL/s 
 The vehicle was cruising at a steady speed or decelerating (average speed of 40 

miles/hour) at low load (average load of 12%) and at a low engine speed (average 
engine speed less than 1400 rpm). 

 
Since exhaust data was not available to evaluate the accuracy of the MAF-based or 

injector-based fuel rates, engineering judgment was used to assess whether the MAF fuel rate or 

the injector fuel rate appeared most reasonable. The average mass air flow during the entire 53-

minute test (including during times when injector fuel rate and the MAF fuel rate agree) when 

the throttle was under 17% was 4.0 g/s. Stoichiometric combustion of 4 g/s of air corresponds to 

0.3812 mL/s of E10 (with an A/F ratio of 14.08 and a fuel specific gravity of 0.745), or 0.3177 

mL/s of E10 if combusting at a lambda of 1.2.  

In order to obtain a stoichiometric fuel rate of 0.9915 mL/s (the injector fuel rate seen 

during condition 3 with a throttle position under 17%), a mass air flow rate of 11 g/s would be 

required, and at a lambda of 1.2, a mass air flow rate of nearly 13 g/s would be required. No 

mass air flow rates near these values were seen anywhere in the test at throttle position less than 

17% (our data showed an average throttle position of 20% at an average load of 30% for mass air 

flow rates between 11 and 13 g/s). Also, since the maximum mass air flow rate is physically 

limited due to the closed throttle plates, we believe a mass air flow of approximately 4 g/s at a 

throttle position of under 17 % to be reasonable. We also believe the lambda output of the wide-

band oxygen sensor to be reasonable since the oxygen sensor is independently monitored by the 

OBD system. A fuel rate of 0.9915 mL/s for E10 fuel with a 4 g/s mass air flow rate corresponds 

to a lambda value of 0.38 (air /fuel ratio of 5.35), which is much lower than typical vehicle 

operation and could illuminate the malfunction indicator light and possibly result in vehicle 

                                                 
42 SAE J1979 Revised February 2012, Section 3.1.1., www.sae.org 
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drivability problems. Because of these reasons, we feel the injector-based fuel rate may be 

incorrect during these discrepancies. 

 
 

In discussions regarding this discrepancy, HEM Data was unable to identify the source of 

the poor correlation, but did indicate that the relationship between the MAF and calculated 

injector fuel rate varies among vehicle types. Although ERG believes the injector fuel rate is 

suspect during these deviations, neither ERG nor HEM Data were able to further identify why 

the injector fuel rate could be in error, beyond that previously described. Section 5.6.6 of this 

report describes additional analysis which could be performed to futher explore the source of this 

discrepancy. Additional investigation of this discrepancy is recommended prior to proceeding 

with a study in which enhanced PIDs are collected. 

Time 
(s) 

RPM 
(rpm) 

 

Speed 
(km/hr) 

Load 
(%) 

Throttle 
(%) 

MAF 
(g/s) 

Lambda MAF Fuel 
Rate (mL/s) 

Injector 
Fuel Rate 

(mL/s) 

Discrepancy 
Type 

395 1706 91 74 33 30.6 1.00 2.910 2.972  
396 1708 93 63 26 21.8 0.99 2.095 2.839 3 
397 1674 93 11 16 4.8 1.23 0.368 2.783 3 
398 1593 92 11 16 4.3 1.23 0.333 2.648 3 
399 1523 88 11 16 4.2 1.23 0.321 2.531 3 
400 1482 86 11 16 4.1 1.23 0.316 2.464 3 
401 1446 84 11 16 4.1 1.23 0.320 2.404 3 
402 1431 82 11 16 4.1 1.23 0.316 2.379 3 
403 1409 80 12 16 4.1 1.23 0.317 2.342 3 
404 1380 78 12 16 4.1 1.23 0.316 2.293 3 
405 1345 78 12 16 4.1 1.23 0.319 2.235 3 
406 1320 76 13 16 4.1 1.23 0.317 2.195 3 
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Time 
(s) 

RPM 
(rpm) 

 

Speed 
(km/hr) 

Load 
(%) 

Throttle 
(%) 

MAF 
(g/s) 

Lambda MAF Fuel 
Rate (mL/s) 

Injector 
Fuel Rate 

(mL/s) 

Discrepancy 
Type 

407 1273 74 13 16 4.1 1.23 0.317 2.117 3 
408 1166 71 14 16 4.1 1.23 0.317 1.938 3 
409 1166 66 14 16 4.1 1.23 0.317 1.939 3 
410 894 53 18 16 4.2 1.23 0.323 1.486 3 
411 1198 44 14 16 4.1 0.94 0.415 0.753 3 
412 909 35 18 16 4.1 0.93 0.419 0.381  

 
Discrepancy Type 4 (Injector lower than MAF over multiple points) – This 

discrepancy was very infrequent, and is shown in the plot and table below. As shown in the table, 

load, throttle position, and MAF all increase during this period of discrepancy. Injector fuel rate 

and RPM also increase, but not as much as the other parameters. 

 
 

Time 
(s) 

RPM 
(rpm) 

Speed 
(km/hr) 

Load 
(%) 

Throttle 
(%) 

MAF 
(g/s) 

Lambda MAF Fuel 
Rate (mL/s) 

Injector 
Fuel Rate 

(mL/s) 

Discrepancy 
Type 

530 1102 41 13 16 3.5 1.00 0.337 0.316  
531 1552 43 51 24 23.1 1.02 2.153 0.857 4 
532 1552 43 51 24 23.1 1.02 2.153 0.857 4 
533 1552 43 51 24 23.1 1.02 2.153 0.857 4 
534 1552 43 51 24 23.1 1.02 2.153 0.857 4 
535 1552 43 51 24 23.1 1.02 2.153 0.857 4 
536 2537 45 70 33 42.8 1.00 4.060 4.684  
537 1866 47 9 16 4.3 0.98 0.418 1.667  
538 1433 48 13 16 4.1 0.98 0.398 0.369  
539 963 47 20 18 7.3 1.23 0.564 0.248  
540 1045 45 15 16 3.9 0.90 0.417 0.326  
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Discrepancy Type 5 (Signals differ during transients, combination of types 1-4) – 

This discrepancy could actually be considered to be a combination of discrepancy types 1 

through 4 listed above, occurring back-to-back over multiple points. Typically, this appears as an 

injector which fails to track multiple rapid MAF transients. The table below lists the alternate 

discrepancy types (1 through 4) which could be assigned to each data point. 
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Time 
(s) 

RPM 
(rpm) 

Speed 
(km/hr) 

Load 
(%) 

Throttle 
(%) 

MAF 
(g/s) 

Lambda MAF Fuel 
Rate (mL/s) 

Injector 
Fuel Rate 

(mL/s) 

Discrepancy 
Type 

325 1370 74 32 19 10.9 1.04 1.000 0.840 5 (3) 
326 1355 74 13 16 4.3 0.99 0.408 0.930 5 (3) 
327 1319 73 12 16 4.0 1.23 0.310 0.906 5 (3) 
328 1266 72 13 16 4.0 1.23 0.309 0.870 5 (3) 
329 1222 71 13 16 4.0 1.23 0.309 0.839 5 (3) 
330 1194 69 13 16 4.0 1.23 0.310 0.820 5 (3) 
331 1355 68 11 16 4.0 1.23 0.309 0.931 5 (3) 
332 1806 66 90 26 36.7 1.03 3.377 1.241 5 (2) 
333 1497 68 44 22 16.5 0.93 1.686 1.720 5 (2) 
334 1482 67 45 22 16.7 0.98 1.615 1.631 5 (2) 
335 1347 69 49 22 16.5 0.99 1.594 1.486  
336 1302 70 40 20 12.8 0.99 1.229 1.468 5 (3) 
337 1301 72 12 16 4.0 1.00 0.383 1.264 5 (3) 
338 1816 71 61 25 25.4 0.81 2.971 1.506  
339 1409 73 24 16 6.7 0.96 0.666 1.872 5 (3) 
340 1305 73 13 16 4.1 1.23 0.314 1.241 5 (3) 
341 1276 72 13 16 4.0 1.23 0.309 1.214 5 (3) 
342 1238 71 13 16 4.0 1.23 0.308 1.178 5 (3) 
343 1198 69 13 16 4.0 1.23 0.306 1.140 5 (3) 
344 1232 68 14 16 4.0 1.23 0.308 1.172 5 (3) 
345 1422 65 23 19 9.2 1.23 0.708 1.353 5 (3) 
346 1433 63 52 22 18.8 0.91 1.967 0.917 5 (2) 
347 3564 65 12 18 9.5 0.98 0.921 7.024 5 (1) 
348 3927 63 40 27 38.0 1.00 3.605 4.115 5 (1) 
349 3260 65 11 19 9.6 0.96 0.956 0.838 5 (1) 
350 1800 65 11 17 5.6 1.23 0.431 0.463  

 
Toyota Prius comparison – Figure 5-10 shows a time-series plot comparison of the fuel 

consumption (mL/s) calculated using the Toyota Prius’ mass air flow sensor and wide-band 

oxygen sensor data with the fuel-injector-based fuel rate provided by HEM Data. Figure 5-11 

shows a parity plot which compares the fuel rate computed using MAF and wide-band oxygen 

sensor (x-axis) with the injector fuel rate (y-axis). On this plot, the 1:1 line is shown in red. As 

can be seen in Figure 5-11, the correlation between the hybrid Prius injector vs. MAF fuel rates 

was much better than for the conventional (non-hybrid) Camry. Figures 5-12 and 5-13 show the 

same data without the wide-band lambda adjustment (as an estimate of results that might be 

obtained with a narrow-band oxygen sensor). Figures 5-14 and 5-15 provide a comparison 

between the corrected (with lambda) and uncorrected (no lambda) fuel rates calculated with mass 

air flow for the 2011 Toyota Prius. 
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Figure 5-10.  Comparison of MAF-Derived (with Lambda Adjustment) and Injector Fuel Rates for 2011 Prius 

 
 

Figure 5-11.  MAF-Derived (with Lambda Adjustment) vs. Injector Fuel Rates for 2011 Prius 
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Figure 5-12.  Comparison of MAF-Derived (without Lambda Adjustment) and Injector Fuel Rates for 2011 Prius 

 
 

Figure 5-13.  MAF-Derived (without Lambda Adjustment) vs. Injector Fuel Rates for 2011 Prius 
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Figure 5-14.  Lambda-Corrected vs. Uncorrected MAF Fuel Rates for 2011 Prius 

 
 

Figure 5-15.  Scatter-Plot Comparison of Lambda-Corrected and Uncorrected MAF Fuel Rates for 2011 Prius 
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Table 5-13 summarizes results from the MAF-derived fuel rate and the injector-derived 

fuel rate over the 14-minute drive. Values are provided with wide-band oxygen sensor 

corrections (with ) and also without the correction (no ) to provide an estimate of results that 

would be obtained for this vehicle if it were equipped with a narrow-band oxygen sensor. 

Table 5-13.  Comparison of the Toyota Prius’ Injector vs. MAF-Based Fuel 
Consumption Estimates  

Parameter MAF-based value Injector-
based value 

Comments 
With  No  

Cumulative 
fuel used  

729 mL 725 mL 753 mL Cumulative -adjusted MAF fuel rate is 24 
mL (3.3%) lower than injector-based value, 
the uncorrected is 28 mL (3.9%) lower 
(using the formula |MAF-FI|/MAF) 

 
As can be seen in Figures 5-11 and 5-13, most of the scatter between the Prius’ MAF fuel 

rates and the injector fuel rates occurred at rates under 2 mL/s. Differences between the two fuel 

rate estimates generally occurred during transient operation (either increasing or decreasing 

internal combustion engine load), and for many of the transients, the injector-derived fuel rates 

appeared to lag the MAF-derived fuel rates by approximately one second. Also, many of the 

differences between MAF-derived fuel rates and injector fuel rates occurred at transitions 

between the gas and electric propulsion (i.e., either the internal combustion engine was starting 

or stopping). This does not appear to be associated with time misalignment or any apparent error 

in the OBD MAF or injector-derived fuel rates. Instead, this primarily appears to result from 

comparing two different and rapidly-changing signals with different rise and fall rates over 

quickly-fluctuating transients. In addition, the relative magnitude (percentage) of these errors is 

generally high because most of these transients occur at very low fuel rates. As an illustration, 

consider the data extract in Table 5-14 and shown graphically in Figure 5-16 (this data is from 

seconds 700 through 707 of the 2011 Prius used for this analysis). 

Table 5-14.  MAF vs. Fuel Injector Fuel Rate Data during a Startup Transient 

Time 
(s) 

RPM 
(rpm) 

MAF 
(g/s) 

Lambda MAF Fuel 
Rate (mL/s) 

Injector Fuel 
Rate (mL/s) 

|Diff|  
(mL/s) 

% Diff 

700 0 0.17 1.03578 0 0 0 0 
701 892 0.62 1.165344 0.0507 0.6334 0.582699 1149% 
702 1130 7.65 0.910974 0.8003 0.7411 0.059173 7% 
703 676 0.96 0.971059 0.0942 0.4056 0.311388 331% 
704 0 2.26 1.134173 0.1899 0 0.189894 Inf 
705 0 0.5 1.1093155 0.0430 0 0.042953 Inf 
706 0 0.2 1.0799745 0.0176 0 0.017648 Inf 
707 0 0.18 1.061644 0 0 0 0 
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Figure 5-16.  MAF vs. Fuel Injector Fuel Rate Graph during a Startup Transient 

 
 

As shown in Figure 5-16, during this brief engine start-up, the two signals achieve 

approximately the same maximum value (0.8003 mL/s and 0.7411 mL/s at second #702). 

However, the rate at which these signals rise to their maximum value varies, leading to 

differences in their values along the way. As described earlier, the injector fuel rate is reported 

by the OBD system as the volume (mL) of cylinder one's last 10 injections, and this value is then 

converted to a second-by-second basis (as previously described). This may explain the slower 

rise and fall of the injector’s fuel rate compared to the “quicker” signal from the Prius’ hot-wire 

anemometer mass air flow sensor. As can be seen in Table 5-14, none of the reported values 

appear unreasonable, they just exhibit different rise and fall rates which is evidenced during 

transients. This is why the instantaneous values listed in Table 5-14 can vary so significantly, yet 

the overall average fuel economy averages listed in Table 5-13 are within approximately 3% to 

4% of each other. 

A summary of the differences in MAF-based vs. injector-based fuel rates is provided in 

Table 5-15. These values were calculated using the absolute value differences between each of 

the 1 Hz individual data points in the dataset. As described for the Toyota Camry comparison, 

the cumulative difference between injector and MAF-based fuel rates is much lower (under 4%) 

than the average instantaneous difference (approximately 22%) since the average instantaneous 

difference is calculated with each data point weighted equally (for this test, the difference of the 

sums differs from the average of the differences). 
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As shown in Table 5-15, for the entire test, the average of the differences between the 

MAF fuel rates (with wide-band oxygen sensor adjustments) and the injector fuel rates was 

0.065 mL/s, the standard deviation of the differences in fuel rates was 0.1033 mL/s, and the 

maximum difference seen between the two values was 0.6837 mL/s. The average of the percent 

differences between the MAF fuel rates and the injector fuel rates was 22%, and the maximum 

percent difference seen between the two was 1149%. Nine observations had a difference between 

injector fuel rate and MAF fuel rate greater than 200%. Six of these nine occurred at engine 

on/off transitions, and all of them occurred at low MAF (and fuel) flow rates (under 1 mL/s). As 

explained earlier, because of these low fuel flow rates, the absolute difference in fuel flow 

estimates between the MAF and injector fuel rate estimates was relatively low for these nine 

observations, between 0.1061 mL/s and 0.5963 mL/s.  

Table 5-15.  Summary of Differences in MAF-Based and Injector-Based Fuel Rates 
for 2011 Toyota Prius 

Parameter Fuel Rate 
|MAF| – FI 

Relative 
|MAF-FI|/MAF 

Fuel Rate 
|MAF – FI| 

Relative 
|MAF-FI|/MAF 

With  Adjustment Without  Adjustment 
Average of the differences 
between 1 Hz MAF-based 
and injector-based fuel 
rates 

0.0646 mL/s 22 % 0.0742 mL/s 21 % 

Standard Deviation of the 
differences between 1 Hz 
MAF-based and injector-
based fuel rates 

0.1033 mL/s 67 % 0.0963 mL/s 60 % 

Maximum difference 
between 1 Hz MAF-based 
and injector-based fuel 
rates 

0.6837 mL/s 1149 % 0.7098 mL/s 972 % 

Minimum difference 
between 1 Hz MAF-based 
and injector-based fuel 
rates 

0.000 mL/s 0.0 % 0.000 mL/s 0 % 

 
5.5.3 Validation using Dynamometer 

ERG’s subcontractor SGS ETC performed in-laboratory on-chassis dynamometer testing 

of a 2009 Saturn Outlook using several different test cycles. These tests were conducted at the 

SGS ETC laboratory in Aurora, Colorado, and the cycles used were the EPA standard city cycle 

(FTP75), the EPA standard highway fuel economy cycle (HFET), and the aggressive drive cycle 

(US06). Fuel consumption and emissions were measured on a second-by-second basis during 

each test, and standard protocols were used to determine the second-by-second fuel consumption 
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and emissions over each drive cycle. Standard SAE J1979 OBDII data was also logged 

throughout the testing using the HEM Data DAWN Mini datalogger. The analysis, which is 

described below, compares fuel rate calculated from dynamometer data with fuel rate calculated 

from OBD data. The analysis compares the fuel rates during normal operation (closed loop and 

non-enrichment) and also in heavy-throttle/load operation (with enrichment). 

The 2009 Saturn Outlook was equipped with a 3.6L V6 gasoline direct injection (GDI) 

engine. The vehicle was equipped with a mass air flow sensor (rather than using MAP / speed-

density) and a narrow-band oxygen sensor. The fuel used was EPA Tier II certification fuel with 

no ethanol. The specific gravity was 0.7389, and the API Gravity was 60.0.  

During all vehicle operation on the dynamometer, the HEM Data logger was installed on 

the Saturn’s OBD port. The dynamometer testing produced two datasets. One set was obtained 

from the HEM Data logger and included data from standard PIDs. The other set was obtained 

from the dynamometer test cell and included measurements from the dynamometer and from the 

constant volume sampling system. 

The 2009 Saturn Outlook was tested on a chassis dynamometer over three cycles: the 

HFET, US06, and FTP75 driving schedules. The FTP75 test was made up the traditional three 

bags: a cold start for Bag 1, which was immediately followed by Bag 2, then a 600-second soak, 

which was followed by Bag 3. Two HFETs and two US06s were run with the first of each pair 

being used to warm up the vehicle for the dynamometer data acquisition on the second of each 

pair.  

For the first test (the FTP75), the test was initiated as a cold start, but only about 15 

seconds of cold-start data are available and the vehicle transitioned into closed loop before the 

initial idle period was over, so an evaluation of OBDII fuel economy estimates during loaded 

transient open loop operation is not possible with this data. 

The analysis described below uses neural network modeling. As will be shown, neural 

network modeling is used in this analysis to account for time delays and diffusion in the 

dynamometer data with respect to the OBD data. Without such accounting, direct comparison of 

dynamometer data with OBD data would lead to the conclusion that their fuel rates do not agree, 

which is an incorrect conclusion. In this analysis neural network modeling is also used to rapidly 

screen the influence of potential independent variables, including their curvatures, interactions, 

and time delays, on variables of interest to fuel economy – in this case, fuel rate. In general, if 

the neural network cannot find a good relationship among a set of variables, a better traditional 

ordinary least squares regression model will likely be very difficult to find. However, if a neural 
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network model can predict fuel rate well, then a standard regression model, with its valuable 

regression statistics, can probably be built. Thus, we do not advocate using a neural network 

model to be used to predict fuel rates in the main study.  

The analysis to determine the ability of standard OBD information to accurately quantify 

second-by-second fuel economy was carried out using Rockwell Automation’s PlantPAx 

ModelBuilder software. The first step in the analysis was to time-align the HEM Data and 

dynamometer datasets. This was done by aligning the vehicle speed from the OBD data stream 

with the vehicle speed from the dynamometer data stream. After alignment, those two speeds had 

an r2 of 0.9998 with each other for the data from all three test cycles combined. 

Because of the excellent agreement between the vehicle speeds from OBD and from the 

dynamometer, instead of comparing fuel economies this analysis compares the volumetric fuel 

flow rate (mL/s) inferred from the OBD data with the volumetric fuel flow rate (mL/s) calculated 

from the dynamometer data. The dynamometer data contains a variable for the mass fuel flow 

rate (g/s) based on a carbon balance of the emissions from the vehicle. The volumetric fuel flow 

rate was calculated from the dynamometer volumetric flow rate using the fuel density according 

to: 

DYN_calc_FuelRate (mL/s)    =    DYN_FuelRate (g/s)   

      0.7389 g/mL 

The uncorrected43 fuel flow, assuming stoichiometric combustion, was calculated from 

the OBD mass air flow data, the stoichiometric air/fuel ratio for gasoline with 0% ethanol, and 

the density of the fuel using:  

OBD_calc_FuelRate_Uncor (mL/s)  =  OBD_MassAirFlow (g/s) * (1g fuel/14.65 g air) 

            0.7389 g/mL 

Figure 5-17 shows time series plots based on those calculations for the dynamometer fuel 

flow and the OBD uncorrected fuel flow for the first 400 seconds of the FTP75 Bag 1. The figure 

also shows the speed of the vehicle as measured by OBD. Each data point on the figure is a one-

second measurement. 

                                                 
43 “uncorrected” means that the calculated volumetric fuel rate has not been corrected for any deviations of 
combustion from stoichiometric. Later in the analysis, corrections for non-stoichiometric combustion events will be 
explicitly brought into the calculations. 
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Figure 5-17.  Fuel Flow Rate and Speed Traces During FTP75 Bag1 

 
 

A comparison of the dynamometer fuel flow with the OBD fuel flow shows that two 

major features are evident from Figure 5-17. First, the dynamometer fuel rate time series is about 

10 seconds behind the OBD fuel rate time series. The time required for exhaust gas to move 

through the vehicle’s exhaust system and the constant volume sampling system to finally be 

measured by the analyzers contributes to this time delay. Another contribution is the time for 

dynamometer calculations and storage of the results. Second, the OBD fuel rate time series has 

considerably more high frequency content than the dynamometer fuel rate time series. The 

dynamometer fuel rate time series appears to be smoothed in comparison with the OBD fuel rate 

time series. This can be a consequence of the diffusion of CO and CO2, whose concentrations are 

used to calculate dynamometer fuel rate, in the exhaust system and constant volume sampling 

system. Apparent smoothing is also produced by the rise-time and fall-time characteristics of the 

CO2 and CO analyzers used to measure concentrations.  

The difference in high frequency content of the dynamometer and OBD fuel rate time 

series is more clearly seen by the overlay plot in Figure 5-18 in which the dynamometer fuel rate 
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time series has been shifted ten seconds44 earlier. From Figure 5-18, it is evident that a data 

analysis that compares the observed dynamometer fuel rate with the OBD inferred fuel rate 

would not produce an excellent agreement because of the difference in the high frequency 

content of the two time series. However, if one or the other time series could be modified so that 

both would have the same high frequency content, then a much better agreement for the two 

measures of fuel flow would result. This, in turn, would produce a more accurate indication of 

the ability of OBD information to quantify or reflect the actual fuel flow in the engine.  

The approach that we chose was to smooth the inferred OBD fuel rate, which has the 

high frequency content, to produce the dynamometer fuel rate, which has the smoother 

appearance. The smoothing was accomplished by modeling the dynamometer fuel rate time 

series as a function of different time delays of the OBD fuel rate time series. This simulates the 

diffusion and time delay processes that occur during exhaust sampling, dilution, measurement, 

calculation, and results storage. We used PlantPAx ModelBuilder software to build a neural 

network model using the combined time series data for the HFET, US06, and FTP75 tests. The 

input variables were the OBD_calc_FuelRate_Uncor (mL/s) for -6, -7, -8, -9, -10, -11, -12, -13, 

and -14 second time delays. The output variable was the time series for DYN_calc_FuelRate 

(mL/s). All 3205 one-second observations of the HFET, US06, and FTP75 were used to train, 

test, and validate the neural network model. The neural network Model 9 had an r2 of 0.990, and 

the standard deviation of the residuals for the fitted dynamometer fuel rate was 0.143 mL/s.  

 

                                                 
44 In some plots in this section of this report, some time series are shifted with respect to the raw dataset so that 
related features on different time series are more clearly revealed. Plotted variable names that begin with “led10_” 
mean that the data for the variable has been shifted 10 seconds earlier, and “lag10_” means that the data has been 
shifted 10 seconds later.  
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Figure 5-18.  Superimposed OBD Inferred and Dynamometer Calculated  
Fuel Flow Rate During FTP75 Bag1 

 

 
 

The fitted values from the model were appended to the original dataset. Figure 5-19 

shows a plot of the observed dynamometer fuel rate in blue and the neural network Model 9 

prediction values in red for the first 400 seconds of Bag 1 of the FTP. An examination of the plot 

shows good agreement between the neural network model and the observed dynamometer fuel 

rates during most of the bag. Two areas where the model did not predict the observed fuel rate 

well are during the cold start from Row 3480 to 3500 and during the period from Row 3785 to 

3800. The speed trace45 is also shown in Figure 5-19 as the brown line. This shows that the 

disagreement just before Row 3800 occurs during a rapid and long duration deceleration.  

                                                 
45 Note that the speed trace is for speed/10 in miles per hour, as indicated by the variable prefix “0.1_”. 



 

5-63 

Figure 5-19.  Performance of Model 9 During FTP75 Bag1 

 

 
 

We examined the entire time series for the dynamometer test to see if there were other 

occurrences of a disagreement between the dynamometer fuel rate and the Model 9 fuel rate such 

as the event just before Row 3800. We found two occurrences in each of the three test cycles for 

a total of six occurrences46 that had almost exactly the same characteristics.  

The modeled fuel rate was approximately 0.5 mL/s at each of these six discrepancies, 

which is approximately the same fuel flow rate measured on many occasions throughout the 

dataset during engine idling and moderate vehicle decelerations. On the other hand, the 

dynamometer-measured fuel rate was about 0.1 mL/s at the bottom of the dip at each of the six 

discrepancies. We suspected that the dips in the observed dynamometer fuel rate, such as the 

blue dip in Figure 5-19 just before Row 3800, may represent the effects of fuel cut-off by the 
                                                 
46 At these rows on an unshifted time scale for DYN_calc_FuelRate: 1075, 1534, 2634, 3015, 3793, and 5779. 
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engine management system. We postulated that if fuel cut-off were actually occurring, its effect 

might be recorded in the OBD data stream.  

Figure 5-20shows the first 400 seconds of Bag 1 of the FTP75 cycle with the DYN and 

predicted DYN fuel rates shifted 10 seconds early to align with OBD variables. The traces show 

that the OBD Bank 1 O2 Sensor voltage and OBD Bank 2 O2 Sensor voltage dropped to 0.000 

volts just before the point of disagreement between observed and predicted dynamometer fuel 

rate. The histograms of the OBD Bank 1 and Bank 2 O2 Sensor voltages, which are shown in 

Figure 5-21, are dominated by two modes with one centered at about 0.1 volts and another 

centered at about 0.7 volts for the narrow band oxygen sensors that are used for this engine. In 

addition, the histograms for the Bank 1 and Bank 2 sensors show a small peak of about 127 

seconds of operation where the voltage is recorded as exactly 0.000 volts. It is during these 

seconds that we postulated that fuel cut-off to the engine was occurring.  

Figure 5-20.  Searching for Fuel Cut-Off Indicators 
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To test this hypothesis, we created an indicator variable for fuel cut-off, 

OBD_FuelCutOff. If the OBD Bank 1 O2 Sensor and OBD Bank 2 O2 Sensor were both 

between 0.000 and 0.001 volts, OBD_FuelCutOff was assigned a value of 1; else 

OBD_FuelCutOff was assigned a value of 0 at all other times. Then, we built another neural 

network called Model 10 that was the same as Model 9, except that in addition to time delays 

inputs for OBD uncorrected fuel rate, Model 10 had inputs for OBD_FuelCutOff at time delays 

of -8, -9, -10, -11, -12, -13, -14, -15, and -16 seconds. The r2 of this regression was 0.992 with a 

standard deviation of the residuals of 0.124 mL/s. The various time delays for the 

OBD_FuelCutOff variable allow the effects of diffusion on a fuel cut-off at the engine to be 

modeled as seen in the dynamometer fuel flow time series. 

Figure 5-21.  Histograms of OBD Bank1 and Bank 2 Oxygen Sensor Voltages 

 
 

Figure 5-22 shows the improvements by Model 10 for Bag 1 of the FTP75 test. The plot 

shows the observed dynamometer fuel rate in blue, the predicted results from Model 10, which 

includes the effects of fuel cut-off, in red, the OBD_FuelCutOff indicator variable in turquoise, 

and the speed/10 trace in brown. The plot shows that the inclusion of the OBD_FuelCutOff 

variable in Model 10 greatly improves the fit of the data just before Row 3800. The other five 
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occurrences of disagreements between the observed dynamometer fuel rate and the fuel rate 

predicted by Model 9 showed no substantial disagreement with Model 10. At the same time, the 

Model 10’s ability to predict fuel flow in regions where presumed fuel cut-off was not occurring 

was just as good as for Model 9. 

Figure 5-22.  Performance of Model 10 During FTP75 Bag1 

 
 

 
 

At this point, the sole remaining discrepancy between the modeled and observed 

dynamometer fuel flow rate occurs during the first 20 seconds of Bag 1 of the FTP. These 20 

seconds are the only observations in the entire dynamometer dataset where the engine was 

started after an overnight soak and where the actual fuel rate was measured by the dynamometer. 

We examined the time series of OBD variables for the entire dataset to find variables that had 

specific and distinct values during the 20 second cold start and did not have those values at any 
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other time in the dataset, with the possible exception of a few single spurious values here and 

there. We found that the OBD_CommandedEquivalenceRatio, a standard OBD PID, met this 

requirement. OBD_CommandedEquivalenceRatio values greater than 1 indicated lean operation, 

values less than 1 indicate rich operation, and values equal to 1 indicate stoichiometric operation. 

During the 20 seconds of cold start data in Figure 5-22 (Rows 3470 to 3490) the dyne-

measured fuel rate (blue) is lower than the fuel rate predicted by Model 10 (red). The Model-10-

predicted fuel rate values at non-fuel-cut-off conditions are on a stoichiometric basis since the 

majority of the data used to build the model is stoichiometric data. Thus, these values indicate 

that engine operation is actually lean during this cold start since the measured fuel rate (blue) is 

lower than the values expected for stoichiometric operation (red). An estimate of the lambda 

during the cold start is the ratio of the red to the blue values – about 1.3. Thus, the data indicates 

that, during this cold start, engine management seems to be commanding enleanment rather than 

enrichment. This could be the result of the use of fast idle controls and spark retard by this 

modern vehicle to warm the catalyst up quickly and to minimize emissions after cold starts.  

Despite the reason for the engine management strategy on this vehicle, the data indicates 

a lean condition during cold starts. In addition, during the 20 seconds of that cold start the 

OBD_CommandedEquivalenceRatio had values between 1.024 and 1.029, as shown in Figure 5-

23 for Rows 3470 to 3490. After such a cold start, the oxygen sensor is cold and is not 

functioning. Therefore, the manufacturer may be feeding some sort of default value to the 

OBD_CommandedEquivalenceRatio PID. In contrast, during Bag 3 of the FTP75, which has the 

same speed trace but during which the engine undergoes a hot start, the 

OBD_CommandedEquivalenceRatio is 0.999, as shown in Figure 5-24 for Rows 5455 through 

5475. The other time when the OBD_CommandedEquivalenceRatio observations fell in the 

1.024-to-1.029 range, was during the first 14 consecutive seconds of the first HFET drive. 

Because this drive was used to warm up the vehicle for the second and tested HFET, no 

dynamometer results are available. In the entire dataset, only two other isolated one-second 

observations of OBD_CommandedEquivalenceRatio in this cold start range (1.024 to 1.029) 

were scattered throughout the dataset. 

 As mentioned earlier, the measured fuel rate and estimated stoichiometric fuel rate 

during the cold start (Rows 3470 to 3490) indicated a lambda of about 1.3. On the other hand, 

during this same period the OBD_CommandedEquivalenceRatio had reported values between 

1.024 and 1.029. While both sets of values indicate that engine operation is lean during the cold 

start, the values disagree in the degree of leanness that the sets of values imply. This discrepancy 

suggests that the values of OBD_CommandedEquivalenceRatio for this engine under this single 
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cold start appeared to be only a qualitative indicator of stoichiometry. Accordingly, using values 

of OBD_CommandedEquivalenceRatio to directly calculate fuel rate during non-stoichiometric 

operation may be inappropriate. However, OBD_CommandedEquivalenceRatio may be able to 

indicate when fuel cut-off or cold starts may be occurring.  

To try to evaluate this possibility, we created an indicator variable for cold start fuel 

management to be used for modeling, OBD_ColdStart. If the 

OBD_CommandedEquivalenceRatio is between 1.024 and 1.029, OBD_ColdStart was assigned 

a value of 1; else it was assigned a value of 0. 

Figure 5-23.  Searching for Fuel Enrichment Indicators During FTP75 Bag1 
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Figure 5-24.  Searching for Fuel Enrichment Indicators During FTP75 Bag3 

 
 

Based on these observations of certain values for OBD_CommandedEquivalenceRatio 

during the cold start of Bag 1 of the FTP75 and the cool start of the warm-up HFET drive, a third 

neural network Model 11 was built to incorporate the effects of non-stoichiometric combustion 

during some engine-starting events. Model 11 had inputs of OBD_calc_FuelRate_Uncor (mL/s) 

with time delays of -6 to -14 seconds, the indicator variable OBD_FuelCutOff with time delays 

of -8 to -16 seconds, and the indicator variable OBD_ColdStart with time delays of -8 to -16 

seconds. The response variable that was modeled was DYN_calc_FuelRate (mL/s). The model 

had an r2 of 0.993 and the residuals of the predicted dynamometer fuel rate had a standard 

deviation of 0.117 mL/s as is shown in Figure 5-25. 
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Figure 5-25.  Parity Plot for Model 11 for All Three Test Cycles 

 
 

Figure 5-26 gives an indication of the performance of Model 11 for the first 400 seconds 

of Bag 1 of the FTP75. Concentrating on Rows 3470 through 3490, the figure shows that the 

predicted values by Model 11, in red, are largely coincident with the observed dynamometer fuel 

rate, in blue, and are a major improvement over the previous Model 10 predicted values shown in 

Figure 5-22 in Rows 3470 through 3490. The turquoise OBD_ColdStart variable trace, which is 

based on the OBD_CommandedEquivalenceRatio, indicates that combustion was non-

stoichiometric – specifically, combustion was modified by engine controls for a cold start – 

during the first 20 seconds of Bag 1 of the FTP75. 
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Figure 5-26.  Performance of Model 11 During FTP75 Bag1 

 
 

 
 

An examination of the observed and Model 11 predicted dynamometer fuel rate values 

for the entire dataset shows that Model 11 fits the observed fuel flow values under all conditions 

tested, including during the cold start and the six fuel cut-off events. The entire time trace for all 

three test cycles is shown in Appendix B. The observed dynamometer fuel rate is shown in blue. 

The dynamometer fuel rate predicted by Model 11 is shown in red. The OBD_FuelCutOff 

indicator variable is shown in brown. The OBD_ColdStart indicator variable, which is called 

OBD_Enrichment in the appendix, is shown in turquoise. The OBD speed/10 is shown in purple. 

Subsequent to the development of Model 11, we saw that the 

OBD_CommandedEquivalenceRatio could also be used to determine fuel cut-off events, as well 

as the cold start. Figure 5-27 shows a comparison of the OBD_CommandedEquivalenceRatio 

with the OBD_FuelCutOff indicator variable, which was determined from the Bank 1 and 2 O2 
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Sensor voltages, and the OBD_ColdStart variable, which was determined from the 

OBD_CommandedEquivalenceRatio variable for the entire dataset. The figure’s top trace, which 

is for speed, shows that the dataset is made up of two HFETs, two US06s, and one FTP75. The 

plot shows that for all events when OBD_CommandedEquivalenceRatio is near 2, the 

OBD_FuelCutOff equals 1. In addition, OBD_CommandedEquivalenceRatio values near 2 occur 

when the engine is turned off between test cycles. Detailed examination of the data indicates that 

with regard to fuel cut-off, OBD_CommandedEquivalenceRatio contains the same information. 

Figure 5-27 also shows that the dataset contained numerous instances where the 

OBD_CommandedEquivalenceRatio was less than 1 (indicating commanded rich operation). 

Since the agreement between the dyne-measured fuel rate and the fuel rate predicted by Model 

11 was excellent throughout the dataset, these rich values of 

OBD_CommandedEquivalenceRatio were not needed in the model. Nevertheless, a model was 

built to determine if using the values of OBD_CommandedEquivalenceRatio would improve the 

model. The resulting model was not an improvement over Model 11. 
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Figure 5-27.  Examining OBD_CommandedEquivalenceRatio  
as an Indicator of Fuel Cut-Off 

 
 

Overall, the analysis so far indicates that the observed dynamometer fuel rate is closely 

related to just two variables: the OBD mass air flow and the OBD commanded equivalence ratio. 

The OBD mass air flow is used to calculate the fuel flow rate, assuming stoichiometric 

combustion. This works for most, but not all, operating conditions. The analysis indicates OBD 

commanded equivalence ratio can be used to identify periods of fuel cut-off and non-

stoichiometric operation. These findings lead to an overall proposed algorithm that can be used 

to estimate the fuel flow at the engine based solely on standard (non-enhanced) OBD parameters. 

The algorithm is made up of three factors: 1) calculation of the fuel rate assuming stoichiometric 

combustion, 2) a factor that turns off the fuel during fuel cut-off, and 3) a factor that modifies the 

fuel rate during non-stoichiometric operation47: 

                                                 
47 At cold temperatures or under extended high-load situations, which were not used to generate this dataset, the fuel 
injection system may behave completely differently. Under other types of conditions, the mechanism for non-
stoichiometric operation may be completely different from the cold start behavior seen in the dataset. 
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OBD_FuelRate (mL/s)  =   OBD_MassAirFlow (g/s) * (1g fuel/14.65 g air)  

           0.7389 g/mL 

    *  if (OBD_FuelCutOff = 1, 0, 1) 

    *  if (OBD_ColdStart = 1, 0.77, 1) 

where  

OBD_FuelCutOff =   if (1.98 ≤ OBD_CommandedEquivalenceRatio ≤ 2, 1, 0) 

 OBD_ColdStart =   if (1.024 ≤ OBD_CommandedEquivalenceRatio ≤ 1.029, 1, 0) 

The argument of 0.77 in the third factor of the algorithm was needed to best-fit the dyne-

measured fuel rate during the cold start operation at the beginning of Bag 1 of the FTP75 for the 

2009 Saturn Outlook with a GDI engine. This value suggests that the vehicle was running lean 

during this cold start. During the first 20 seconds of Bag1 of the FTP75, the dynamometer-

measured fuel rate is lower than the fuel rate predicted by Model 10 (see Figure 5-22). Model 10 

was trained on the full dataset, which is dominated by warmed-up engine operation. Therefore, 

the predicted fuel rates by Model 10 are those expected by a warmed-up engine. Since the 

measured fuel rate is lower than that predicted by Model 10, the engine seems to be running 

leaner than stoichiometric. Also, if OBD_CommandedEquivalenceRatio equals 1.000 at 

stoichiometric and OBD_CommandedEquivalenceRatio equals 1.999 for fuel cut-off and engine-

off, which are both very lean, then an OBD_CommandedEquivalenceRatio of 1.024 to 1.029 

would be on the lean side of stoichiometric. Modern vehicles have fast idle controls, combined 

with spark retard, to warm the catalyst up quickly after cold starts. It is possible that these fast 

idle controls bypass the MAF sensor.  

Development of the neural network models do not prove that the fuel flows that are 

measured by the dynamometer agree with fuel flows inferred from the OBD data. The neural 

network models merely identify which OBD variables are influential and could be used to 

calculate a fuel flow based on OBD parameters. To verify or determine the accuracy of the 

proposed algorithm given above, the fuel flows calculated by the algorithm and measured from 

the dynamometer data need to be compared. The problem with doing this comparison on a 

second-by-second basis is, as mentioned in the beginning of this discussion, that the OBD data 

contains high frequency information that is not present in the dynamometer data because of the 

diffusion and time delay processes that influence the fuel flow values calculated from the 

dynamometer measurements. One way to get around this difference in high frequency content is 
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to consider the cumulative fuel over a segment of engine operation using second-by-second fuel 

flows inferred from OBD data and calculated from dynamometer data. 

We have performed these calculations separately for the tested HFET, US06, Bag 1, Bag 

2, and Bag 3 of the FTP75 cycles of this dataset. Table 5-16 shows the volumes of fuel 

calculated from these two data sources. The results indicate that the proposed OBD fuel 

algorithm given above “recovers” 100% of the fuel volume measured by the dynamometer, with 

an accuracy of about three percent. The agreement has also been verified on a five- to ten-second 

time scale by examining the cumulative fuel volumes inferred from OBD parameters using the 

algorithm and measured by the dynamometer within each of the three test cycles. 

Table 5-16.  Comparison of Total Fuel Inferred from the OBD Algorithm and 
Calculated from Dynamometer Measurements 

Cycle Duration
(s) 

Cumulative Fuel Volume 
(mL) 

Recovery 
(%) 

Dynamometer
Calculations 

OBD 
Algorithm 

HFET 765 1392.8 1409.2 101.2% 

US06 600 1793.4 1841.3 102.7% 

FTP75 Bag1 505 810.0 816.8 100.8% 

FTP75 Bag2 863 851.8 858.7 100.8% 

FTP75 Bag3 505 667.7 681.9 102.1% 
 

Overall, this analysis of the OBD data and the dynamometer measurements indicates that, 

at least for this vehicle, the OBD mass airflow and the OBD commanded equivalence ratio are 

sufficient to produce an accurate estimate of fuel flow rate at moderate ambient temperatures. 

With that fuel flow estimate and the OBD data stream for vehicle speed, the second-by-second 

fuel economy can be easily calculated by division. Under stoichiometric combustion conditions, 

the OBD mass airflow values along with the stoichiometric air fuel ratio and fuel density are all 

that is required to calculate the fuel flow rate.  

For non-stoichiometric and fuel cut-off events of this single vehicle tested on the 

dynamometer, certain special values of the OBD_CommandedEquivalenceRatio (1.024 to 1.029, 

and 1.98 to 2.00) were needed to create the OBD_FuelCutOff and the OBD_ColdStart indicator 

variables. The special OBD_CommandedEquivalenceRatio values that were used to create these 

two indicator variables could differ from one vehicle to another. In the main study, these special 

values would not be known a priori for each vehicle. However, as long as data collection during 

the main study includes OBD_CommandedEquivalenceRatio and variables that are related to it, 



 

5-76 

for example, the OBD short term fuel trim percents and voltages, we expect that an analysis 

conducted on the OBD data for each individual vehicle from the main study could be used to 

determine the special values that are needed to define fuel cut-off and enrichment events for each 

individual vehicle. For example, the range of OBD_CommandedEquivalenceRatio for fuel cut-

off events would be the same values that would be observed when the engine is off, and the 

range of values that correspond to cold-start non-stoichiometric operation would be those that are 

seen during the beginning of engine operation after a 12-hour soak – something that would 

happen to all instrumented vehicles on most days. 

5.6 Future Proposed Analysis 

As described in this report, we recommend additional analyses of some key issues prior 

to moving forward with a larger-scale study, as this analysis would help provide information 

needed to reduce study costs and enhance data quality. The focus of these activities will be to 

provide information that can be used to assess the relative benefits and cost-effectiveness of 

using standard OBD PIDs versus enhanced OBD PIDs in the main study. One advantage of using 

enhanced OBD PIDs for the main study is that fuel flow rate or surrogates for fuel flow rate may 

be available when mass air flow (or non-stoichiometric operating information) is not available. 

However, while using enhanced PIDs to determine fuel flow rate may be feasible, acquiring and 

interpreting enhanced PID data appears to be a formidable task, and some potential accuracy 

issues have been identified with calculating fuel rate from enhanced PID data. On the other hand, 

while standard PIDs are far easier to obtain and interpret, using them to calculate fuel flow rate – 

especially for vehicles without mass air flow, for operation during non-stoichiometric conditions 

and for diesel engines – can lead to deviations between the calculated fuel flow rate and the 

actual fuel flow rate. Thus, quantifying the size of the deviations and their rate of occurrence in 

the fleet will aid in deciding between using standard and enhanced PIDs. 

5.6.1 Evaluate MAP-to-MAF Conversion Calculations 

As previously discussed, many vehicles use manifold absolute pressure rather than mass 

air flow as an input to determine fuel rate, so these vehicles do not broadcast values for the mass 

air flow standard PID but instead broadcast values for the manifold absolute pressure standard 

PID. To calculate fuel flow rate for these vehicles, the manifold absolute pressure may be 

converted to mass air flow. This conversion depends on the engine’s volumetric efficiency, 

which is a function of engine design, RPM, and load. While volumetric efficiency depends on 

the design of each engine’s air intake system, it is likely that for typical consumer vehicle 

engines (i.e., non-racing engines) the volumetric efficiency surfaces (a function of RPM and 

load) will lie reasonably close to each other. An average of the surfaces from many vehicles 
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could be used to convert manifold absolute pressure to mass air flow. Although these surfaces 

will lie reasonably close to each other, an error will be incurred for each engine because the 

surface for some engines will tend to be above the average surface and others will tend to be 

below.  

This task could be accomplished using 57 vehicles from the Kansas City study dataset 

that have broadcasted standard OBD PIDs for both mass air flow and manifold absolute pressure 

to determine the distribution of volumetric efficiency surfaces and the average surface. An 

analysis of those surfaces would quantify the distribution of uncertainties in calculated mass air 

flow rate when converting MAP to MAF in the main study. 

5.6.2 Calculate Fuel Flow Rate for Mass Air Flow / Narrow-Band Oxygen Sensor 
Gasoline Vehicles 

As previously described, two different types of oxygen sensors are used on vehicles to 

determine stoichiometry: wide-band oxygen sensors and narrow-band oxygen sensors. For the 

purposes of calculating fuel flow rate, wide-band oxygen sensors are preferred since they 1) 

reveal when the engine deviates from stoichiometric and 2) they report the lambda48 of the 

combustion mixture during each of those deviations. Accordingly, using the standard PID for 

lambda is expected to produce accurate values for calculated fuel flow rate. On the other hand, 

narrow-band oxygen sensors only reveal when the engine deviates from stoichiometric, but they 

cannot accurately determine how rich or lean the mixture is.  

When engines equipped with narrow-band oxygen sensors go into a non-stoichiometric 

operating condition, the fuel flow rate can be estimated using an average lambda for the type of 

non-stoichiometric event that is occurring. This would be an improvement over simply using 

lambda=1 for all events. This task could be accomplished using the 169 Kansas City study 

vehicles that have narrow-band oxygen sensors and broadcast the standard PID for mass air flow 

to calculate the effective lambdas for starts, fuel cut-offs, and high loads. The effective lambdas 

would be calculated as the ratio of the fuel flow rate measured by PEMS to the stoichiometric 

fuel flow rate modeled using the neural network software so that time delays and diffusion are 

taken into account. A distribution of effective lambdas would be made up of the individual 

lambdas obtained from all of the non-stoichiometric events of the same type taken from all of the 

vehicles in this dataset. If possible, the lambda distributions for starts and high loads could be 

further split by coolant temperature and load, respectively. The relative deviations of the 

individual lambdas from the average lambda would translate directly to the deviations between 
                                                 
48 Lambda is a quantity that quantifies the stoichiometry of the mixture: lambda=1 is stoichiometric, lambda > 1 is 
lean, and lambda < 1 is rich. 
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estimated fuel flow rate and actual fuel flow rate. The overall result would be an estimate for the 

relative error in fuel flow rate for each type of non-stoichiometric event. 

5.6.3 Calculate Fuel Flow Rate for Manifold Absolute Pressure / Narrow-Band 
Oxygen Sensor Gasoline Vehicles 

Vehicles that both do not broadcast mass air flow and have narrow-band oxygen sensors 

have two sources of error: one source from the conversion of MAP to MAF and another from the 

uncertainty in lambda that arises from the narrow-band oxygen sensor. Theoretically, the errors 

from the analysis described in Sections 5.6.1 and 5.6.2 should simply add together, but a better 

approach to estimate this error would be to perform a separate analysis of the 192 Kansas City 

study vehicles that broadcast manifold absolute pressure. This would be done by converting the 

manifold absolute pressures using the average volumetric surface determined as described in 

Section 5.6.1, and then using the oxygen sensor lambda analysis techniques described in Section 

5.6.2. Again, the overall result would be an estimate for the relative error in fuel flow rate during 

stoichiometric and non-stoichiometric operation. 

5.6.4 Analyze Light-Duty Diesel Vehicle Exhaust Data and OBD Data 

Combustion control for a diesel engine is different than for a gasoline engine. 

Combustion is always lean and therefore non-stoichiometric. Nevertheless, diesel engine 

computers determine the amount of fuel to inject based on RPM, load, accelerator position, 

intake air temperature, and mass air flow or manifold absolute pressure, among other parameters. 

Therefore it may be possible to calculate fuel flow rate, or at least relative fuel flow rate, based 

on the quantities that are standard OBD PIDs. To convert relative fuel flow rate to absolute fuel 

flow rate, the rated power and displacement of each engine may be required.  

ICCT has acquired data on two diesel vehicles. The vehicles were operated on an ARB 

dynamometer to generate OBD data and calculated fuel flow rate from exhaust emissions and 

flow measurements. The same two vehicles were also operated on the road while collecting OBD 

data and PEMS-calculated values of fuel flow rate. In addition, ERG has obtained in-use diesel 

OBD data, which includes OBD fuel flow rate, on a 2011 VW Touareg TDI and a 2012 VW 

Passat TDI. For this task, ERG would analyze the diesel data on these four vehicles with the goal 

of determining how well fuel flow rate can be estimated from standard OBD PIDs. 
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5.6.5 Determine the Standard PIDs that are Populated with Data by Year, Make, 
Model, Engine and Fuel 

While SAE J1979 defines standard PIDs, not all standard PIDs are broadcast on any 

particular vehicle, and vehicle manufacturers elect which PIDs are broadcast, by vehicle, based 

on that vehicle’s engine management strategy and emissions control equipment. Since these 

technologies differ among model year, make, model, engine and fuel, the slate of standard PIDs 

that are populated by different vehicles differ. Although it may be possible to have a “general” 

PID-request configuration for all dataloggers to be used in the study, knowing which PIDs are 

broadcast for any specific vehicle prior to beginning a main study could be beneficial in 

optimizing vehicle-specific datalogger configurations in the main study. This will help ensure the 

optimal data is collected for each vehicle and minimize the possibility of reduced sampling rates 

resulting from oversampling (requesting more PIDs than can be collected on a 1-Hz basis). This 

“tailored” configuration approach would require the contractor know in advance which standard 

PIDs are broadcast, by vehicle, in order to configure each datalogger prior to installation on each 

participating vehicle. 

For this task, a datalogger would be installed for about 1 minute on 1996-2013 vehicles 

as they are inspected (and run) at a state inspection/maintenance station. Data would be collected 

on all standard PIDs that could possibly be used for determination of fuel flow rate and fuel 

economy. The data collected would indicate which standard PIDs are populated for each 

combination of model year, make, model, engine, and fuel. An analysis of the data collected in 

this task would produce a table of standard PIDs broadcast for the most common vehicles in the 

fleet. In addition, results of this task would also provide information regarding the use of MAF 

vs. MAP and narrow- vs. wide-band oxygen sensors, by manufacturer, model year, make, model, 

engine, and fuel type. To minimize costs, the field portion of this task could be performed for 

two or three months during a school break by a student who resides in the same city as the 

inspection/maintenance station.  

5.6.6 Perform additional evaluation of enhanced PID data 

As shown in Section 5.5.2 (Standard SAE J1979 PID vs. OEM-enhanced PID 

Validation), some issues were identified regarding discrepancies between the fuel injector-based 

fuel rate (fuel rate based on an enhanced PID) and the MAF-based fuel rate. As mentioned in 

Section 5.5.2, prior to proceeding with a study in which enhanced PID data is used to determine 

fuel economy, additional investigation regarding the source of the discrepancy would be 

warranted. At a minimum, this might entail collecting standard MAF/oxygen sensor data 

(standard SAE J1979 data), enhanced fuel rate data and either mass-based dynamometer or 
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PEMS data for one or more vehicles. This would provide an independent measure of fuel rate in 

order to reveal the source of the discrepancy between the two fuel rate estimates. 

5.6.7 Collect and analyze additional OBD / dynamometer data from ongoing 
laboratory work 

In order to supplement the analysis described in Section 5.5.3 (Dynamometer Validation), 

the feasibility of performing additional OBD / dynamometer data collection could be explored. 

For example, testing could be conducted at the SGS/ETC laboratory (where the dynamometer / 

OBD testing was performed on the 2009 Saturn for the analysis in Section 5.5.3). Costs could be 

minimized by making arrangements with SGS/ETC to collect OBD data on in-house testing 

already being performed at the laboratory. These arrangements would involve SGS/ETC 

providing dynamometer/OBD test data to ERG for vehicles that SGS/ETC tests. This would 

allow additional analysis to be performed similar to that described in Section 5.5.3.  
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6.0 Cost Estimation 

The costs provided are ERG-loaded rough order of magnitude estimates obtained at the 

time this pilot study was conducted, based on standard contract terms and conditions. Actual 

costs may vary depending on the full-scale study objective, sample size, and final technical 

requirements. The scope of the full-scale study could be tailored to better meet funding 

requirements. These cost estimates are not a bid by ERG. Instead, the costs are provided to give 

potential funding organizations an idea of the funds that might be required to conduct the project 

as a function of scope. The costs presented here are based on the assumption that the datalogger 

would be capable of acquiring some specific enhanced PIDs of interest on many, but not all, 

vehicle combinations of year, make, model, and engine. This pilot study indicated that even that 

restricted goal would be a formidable task. The pilot study further indicated that acquisition of all 

enhanced PIDs of interest on all combinations of year, make, model, and engines would be a 

Herculean task. 

6.1 Estimate of Sampling and Recruitment Costs 

The estimated costs for sampling and recruitment are shown in Table 6-1 and are based 

on the description of recruitment given in Figure 4-2, which would be expected to produce one 

year of data on 200 vehicles. Some of the activities (Indexes A through F and I) in Table 6-1 

have costs that are probably independent of the number of vehicles to be instrumented in the 

Main Study. However, costs for the other activities will change if the chosen vehicle sample size 

differs from 200 vehicles.  

Table 6-1.  Estimated Costs for Sampling and Recruitment Activities  
for the 200-Vehicle Scenario 

Index Item Cost Notes 

A Tentative recruitment tool design 
$4,600 

Draft texts for website, cover letter, 
brochure, interview script, hot buttons.  

B 
Cognitive test of effectiveness of 
incentive packages and cognitive 
testing of recruitment tools 

$6,000 

 Test incentive packages to determine the 
incentive’s effectiveness and 
understanding of the online and telephone 
tools and modify if necessary. 

C Finalize recruitment tool design 

$6,400 

Final texts for cover letter, brochure, 
interview script, hot buttons. Includes 
printing, packaging, mailing the 957 
Advance Notification Packages.  

D 
Finalize and make project website 
operational 

$7,900 

Team/participant communications, 
incentive tracking, gamification, VIN 
check digit checker code. 

E Characterize national fleet  $14,400 National distributions of 11 variables. 
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Index Item Cost Notes 

F Finalize Sampling Design 
$4,800 

Define sample size, stratification level bin 
definitions, representation approach. 

G Source of Participant Candidates49:     

  Option 1: Existing HHTS 

$11,000  

Crude estimate of cost based on 
expectation of collaboration and exchange 
of FE data to HHTS sponsor. Quote was 
not obtained. Actual cost could deviate 
substantially from this figure. 

  
Option 2: Knowledge Network 
HHTS 

$253,000  

Crude estimate of cost based on similar 
sized projects in other technical areas and 
expectation that cost will be more than 
Option 4. Quote was not obtained. Actual 
cost could deviate substantially from this. 

   Option 3: SSRS Omnibus HHTS 

$198,000 

Crude estimate of cost based on similar 
sized projects in other technical areas and 
expectation that cost will be more than 
Option 4. Quote was not obtained. Actual 
cost could deviate substantially from this. 

   
Option 4: Main-Study-Specific 
HHTS 

$145,000 

 Recruit 3,000 in lieu of NHTS. 75,000 
address-based sample to dial 3,000 
households to participate in the main 
study. Other budget assumptions: 20 
minutes interview length, 62% response 
rate, incentive: 10 drawings for a $500 
cash incentive. 

   
Option 5: Vehicle Registration 
Databases 

$150,000 

Option 5 costs are difficult to estimate 
since costs and requirements differ for 
each state. Although it is not likely all 50 
states could be acquired, ERG expects at 
least 10 states could be acquired, and 
would attempt to obtain as many states as 
possible for this price estimate.  

H 
Prime Contractor Management of 
Source of Participant candidates $9,600  

I 
Select target vehicles from 
participant candidates 

$48,000 

Requires looking up tentative propulsion 
system, tentative FEEL values, zip-code-
associated values. 

J Recruiting, online 
$2,000 

 Based on Figure 4-2, 191 would sign up 
online. 

K Recruiting, telephone 
$14,000 

 Based on Figure 4-2, expect to talk with 
766 recruitment targets, interview lasting 
15 minutes. 

L Characterize Participant Pool 

$36,000 

Requires looking up propulsion system 
knowing the VIN, FEEL values, zip-code-
associated values, selecting vehicles to 
match national representation. 

                                                 
49 Bids were not obtained for Options 1, 2, 3, and 5. These costs are just estimates based on what we estimate the 
industry might charge for this size project. 
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6.2 Estimate of Costs for Pre-Data-Collection Activities 

The estimated costs for activities prior to field data collection data collection are shown 

in Table 6-2. These costs are independent of the number of vehicles to be instrumented in the 

Main Study. The costs in Table 6-2 for Indexes a and b are affected by the enhanced-PID 

capability of the datalogger assumed for these cost estimates. 

Table 6-2.  Estimated Pre-Data-Collection Costs 

Index Item Cost Notes 

a Final Datalogger assessment 

$48,000 

Includes assessment of adequacy of 
measurement of acceleration, road grade, 
hybrid battery state of charge, A/C 
compressor status as needed in FE 
assessment. Includes additional validation 
of FE accuracy determined from OBD 
parameters for a hybrid and a diesel 
propulsion system. This cost assumes that 
the datalogger acquires enhanced PIDs. 

b 

Identify and convert enhanced 
OBD parameters by 
manufacturer to units for FE 
quantification 

$24,000 

Includes identifying appropriate enhanced 
OBD parameters fuel rate, as well as for 
hybrid battery state of charge and A/C 
status by manufacturer. This cost assumes 
that the datalogger acquires enhanced 
PIDs. 

c 
Develop datalogger installation 
instructions $6,600 In-box and on-line instructions.  

 
The scopes for Indexes a (Final datalogger assessment) and b (Identify and convert 

enhanced OBD parameters by manufacturer to units for FE quantification) require some 

explanation. These items are necessary since they include several tasks that are required in order 

to perform the Main Study as currently envisioned: For example, as described in Section 5.2.1, 

even once the ability to log certain enhanced PIDs for a vehicle is obtained, many vehicles may 

not broadcast fuel rate directly but rather will report a value from which fuel rate may be 

calculated. For example, some vehicles may provide fuel injector pulse width, and therefore 

determination of fuel rate would require either obtaining fuel injector calibration curves or 

developing a correlation between fuel injector pulse width (at a certain fuel pressure) and fuel 

rate using a MAF-derived fuel rate during stoichiometric operation. Such a relationship would 

need to be found on a by-vehicle basis. In another example, instead of fuel rate, some type of 

injector volume estimate may be reported as an enhanced PID (as was the case for the analysis 

described in Section 5.5.2). If so, the vehicle manufacturer’s strategy for calculating fuel rate 

based on this injector volume estimate needs to be obtained and used to convert to a fuel rate. 

Also, as described in Section 5.5.2, our limited analysis indicated that the vehicle’s enhanced 
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PID injector-based fuel rate may be incorrect during certain types of operation, and additional 

investigation would be needed to better understand fuel rate accuracy estimates for these types of 

vehicles. Additionally, work remains to convert GPS and/or 3-dimensional accelerometer data 

into road grade estimates and to evaluate the accuracy of these road grade estimates calculated 

from this data. We do not regard these activities as optional under the current study design. 

6.3 Estimate of Costs for Data Collection 

The estimated costs for data collection are shown in Table 6-3 for a project that would 

collect data on a 200-vehicle sample over a one-year period. The costs for most data-collection 

activities will change if the chosen vehicle sample size differs from 200 vehicles. Several of the 

activities have “Lo” and “Hi” scopes to reflect the range of options that may be chosen. The low 

and high options for these activities will be used in Table 6-8 to estimate the range of costs to 

collect the data. 

Table 6-3.  Estimated Data Collection Costs for the 200-Vehicle Scenario 

Index Item Cost Notes 

d 
Configure datalogger for each 
vehicle 

$40,000 

Individual configuration may be beneficial. 
Use tracking system so that correct vehicle 
gets correctly configured datalogger. This 
cost assumes that the datalogger acquires 
enhanced PIDs. 

e Send dataloggers to participants 

$22,000 

 Maximum estimated cost to send 
dataloggers for a 2lb package insured at 
$1K is $84.43. Destination was Berwick, 
ME. Cost includes datalogger packaging 
and handling. Based on Figure 4-8, expect 
to initially send dataloggers to 267 
households. 

f 
Online and phone assistance with 
datalogger installations 

$5,000 

Develop online FAQs, answer the phone. 
Assume that 167 (50% of 333) install with 
just printed or online instructions, and 83 
(25% of 333) install with over-the-phone 
assistance. Assume that the remainder will 
require in-the-field assistance (see next 
item). 

g 
Field assistance with datalogger 
installations  

$10,000 

Vendor provides in-the-field installation 
assistance. Assume 83 (25% of 333) field 
installations needed at $100 per visit. 

h Verify datalogger installations 
$4,800=Hi 

Write server code that uses cellular data to 
verify that dataloggers were installed. 

$0=Lo 

If cellular data transmission is not chosen, 
the installation and operation of 
dataloggers cannot be verified. 
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Index Item Cost Notes 

i 
Replace participants who 
experience installation failures 

$10,000=Hi 

If cellular data transmission indicates that 
dataloggers were not installed and 
installation assistance is not successful, 
then the original participant will be 
replaced with a participant from the 
participant pool. Send additional 67 
dataloggers.  

$5,000=Lo 

If cellular transmission is not chosen, some 
participants will report their inability to 
install datalogger. If installation assistance 
is unsuccessful, new participants will be 
chosen from the pool. However, any 
dataloggers that are not installed and are 
not reported as not installed or that are 
installed but are not recording data cannot 
be detected. 

j 
Maintain participants for one 
year 

$4,500 

Includes managing incentives, adding new 
panelists for dropouts, and other support 
for the 267 participants with successful 
installations.  

k 
Verify continued datalogger 
operation 

$4,800=Hi 

“Level 1 Validation”: Server code that 
produces reports of datalogging activity 
(presence of data). 

$0=Lo 

If cellular transmission is not chosen, it 
will not be possible to verify continued 
datalogger operation. 

l 
Ongoing data collection and 
review throughout study $16,800=Hi  

“Level 2 Validation”: Assumes cell 
communication to server, download and 
review throughout study to ensure data is 
complete (not validation or QC). 

$0=Lo 
If cellular transmission is not chosen, it 
will not be possible to review data. 

m 
Ongoing data processing, QC 
and validation $21,600=Hi 

“Level 3 Validation”: Server code and 
engineering review to continuously 
evaluate data from each vehicle to ensure 
that it makes sense. This does not include 
an analysis of fuel economy. 

$0=Lo 
If cellular transmission is not chosen, it 
will not be possible to review data. 

n Vehicle support during study 

$31,000 

Hands-on support for automotive 
problems, dead batteries, etc. This includes 
$25,000 dedicated to vehicle support by 
local vendors. 
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Index Item Cost Notes 

o Run main study for one year 
$120,000=Hi 

General data handling and management 
prior to various validation steps, including 
development and management of Internet 
site to collect data, extraction of data to 
local server and backup procedures, daily 
tracking of incoming data, review of Level 
1 and 2 validation results, resolution of 
technical issues that arise, QC of 
subcontractor activities, subcontractor 
management and support. 

$40,000=Lo 

Process each of the HEM Data files 
(estimated 4,000 files for each of the 
vehicles). This is just dumping data from 
server and the associated processing. It 
does not include any tracking, phone calls, 
validation, or any of the activities listed in 
the cell above for Hi.  

p Datalogger removal and retrieval 

$32,000 

At end of study, getting all the loggers 
back. Expect that this will involve a call or 
postcard, packing and shipping return 
shipment materials (2 shipments), and 
communications to get the stranglers. 
Includes development of in-box and online 
removal instructions.  

q 
Online and phone assistance with 
datalogger removals 

$1,300 

Develop online FAQs, answer the phone. 
Assume that 167 (50% of 333) remove 
with just printed or online instructions, and 
83 (25% of 333) remove with over-the-
phone assistance. Assume that the 
remainder will require in-the-field 
assistance (see next item). 

r 
Field assistance with datalogger 
removals  

$10,000 

Vendor provides in-the-field installation 
assistance. Assume 83 (25% of 333) field 
removals needed costing $100 per in-
person removal. 

s Incentive payments 
$154,200=Hi 

Incentives are based on 267 receiving a full 
$500 and 67 failed-installations receiving 
$100. 

$36,600=Lo 

Incentives are based on 267 receiving a full 
$100 and 67 failed-installations receiving 
$100. 

t Vehicle parts and service 
$11,000 

To handle claims by participants that 
participation in the study damaged their 
vehicle.  
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The scope for Index d (Configure datalogger for each vehicle) requires some explanation. 

The cost estimate accounts for classifying and grouping each study vehicle by technology type in 

order to collect standard SAE J1979 PIDS (i..e, vehicles with MAF/narrow-band; MAF/wide-

band; MAP/ narrow-band; MAP/wide-band; diesel, CAN vs. legacy, etc.) in order to standardize 

generic-PID acquisition. However, this task also includes collection of enhanced PIDs by make, 

model, model year, and engine. This will entail significantly more configuration effort, in 

particular, because enhanced PID data collection strategies differ by make, model, model year, 

and also by parameter. For example, A/C compressor status and hybrid battery state of charge 

are likely to be on different vehicle CAN networks and must be requested separately from the 

powertrain CAN module. Enhanced PID data collection is non-standardized and substantially 

more time consuming than generic PID data collection. 

The scope for the “Hi” option of Index o (Run main study for one year) requires some 

explanation. While it might seem like the data in the Main Study will be collected automatically 

by unattended dataloggers, our experience suggests that some level of human vigilance will be 

required to help ensure that problems are quickly detected, recognized, and addressed so that the 

project has a reasonable chance of meeting completeness objectives. The level of labor that we 

have used for this estimate is equivalent to $1.65 per day per datalogger. Any support that can be 

automated would be automated, but development, refinement, and implementation of logic and 

programming to perform (and automate, as possible) day-to-day study operations and data 

collection activities requires time and effort. In addition, as with any study, in particular, large 

studies involving innovative and groundbreaking work with a large number of participants, we 

envision continued, ongoing direct support will be required to resolve issues that inevitably arise.  

6.4 Estimate of Costs for Data Processing 

The estimated costs for data processing are shown in Table 6-4 for a project that would 

collect data on a 200-vehicle sample over a one-year period. The costs tend to be independent of 

the number of vehicles to be instrumented in the Main Study. Development of a project relational 

database has a “Lo” and “Hi” scope to reflect the range of options that may be chosen. These low 

and high options will be used in Table 6-9 to estimate the range of costs for data processing. The 

costs in Table 6-4 for Indexes w and x are affected by the enhanced-PID capability of the 

datalogger assumed for these cost estimates. 
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Table 6-4. Estimated Costs for Data Processing for the 200-Vehicle Scenario 

Index Item Cost Notes 

u Linking meteorological data 
$21,600 

Estimates of meteorological data at the 
time and location of each vehicle will be 
obtained and linked to the datalogger data.  

v 
Linking fuel data, by season and 
region $9,600 Fuel data for fuel economy estimates. 

w 
Development and analysis of FE 
results of study 

$80,000 

Apply appropriate fuel economy 
calculation strategy and assessment on a 
by-vehicle basis. This cost assumes that the 
datalogger acquires enhanced PIDs. 

x Development of project database 
$24,000=Hi 

A relational database of the datalogger and 
basic data will be provided. This cost 
assumes that the datalogger acquires 
enhanced PIDs. 

$5,000=Lo 

The individual data files from the 
datalogger and a spreadsheet containing the 
basic data and the datalogger file names for 
each instrumented vehicle will be 
provided. 

y 
Compile and present interview 
information, data sheets, vehicle 
info $3,000 

 Includes data files and a memo from 
NuStats with discussion of issues, lessons 
learned, and a brief analysis. 

z 
Analysis of comprehensive study 
data not costed This activity is not costed in this pilot. 

 
 
6.5 Datalogger Costs 

This section lists cost estimates to procure a datalogger that would be capable of 

acquiring in-use data as described in the previous subsections. 

6.5.1 HEMData DAWN Mini 

Table 6-5 provides ERG-loaded cost estimates for the HEMData DAWN Mini, as well as 

various costs for optional enhancements.  

For any datalogging study, a greater number of dataloggers need to be purchased than the 

targeted number of complete vehicle datasets to be obtained in order to cover necessary 

participant oversampling and equipment failures and malfunctions. As described near the end of 

Section 4.2, for the 200-vehicle plan, which would target a minimum of 200 successful year-long 

instrumentations, 267 vehicles would need to be recruited and have dataloggers initially 

successfully installed and collecting or transmitting data to account for participant attrition 

during the one-year period. Reasons for attrition could include datalogger malfunction, vehicle 
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accident, vehicle sale, and owner dissatisfaction with the project, as well as a variety of 

unexpected events that occur in any field project. Implementation of that plan requires 267 

dataloggers (see Figure 4-2) ready to go at the beginning of the instrumentation phase. Any 

dataloggers that are returned when a vehicle ceases participation could be used again to 

maximize the size of the instrumented sample. Proportionately, 1068 loggers would be needed 

for the 800-vehicle study. Using the without-cellular datalogger prices from Table 6-5, that 

yields $234,000 (=267*$875) for the 200-vehicle study and $607,000 (=1068*$568) for the 800-

vehicle study. 

Table 6-5.  HEMData DAWN Mini Costs 

Item Cost Notes 
HEMData DAWN Mini costs, by quantity 

1-4 base units, cost each $2200 These costs are for the base unit with GPS, 
but with no cellular capability. HEM Data 
reports legacy protocol capability, 
accelerometer functionality and internal 
temp will be available in the fall of 2013 at 
no additional cost. 

5-9 base units, cost each $1790 
10-19 base units, cost each $1490 
20-49 base units, cost each $1350 
50-99 base units, cost each $1170 
100-199 base units, cost each $1030 
200-499 base units, cost each $875 
500-999 base units, cost each $568 
HEMData DAWN processing software $640 Software purchase is per PC, not logger  

Cellular communication service, per logger 
1-4 units, cost each (hardware) $550 Cellular agreement still being finalized with 

carrier, costs to be refined as more info 
becomes available 

5-9 units, cost each (hardware) $550 
10-99 units, cost each (hardware) $440 
100-199 units, cost each (hardware) $330 
200-299 units, cost each (hardware) $280 
Monthly cell communication service  $40 Est. depends on carrier and data quantity 
Internet data repository (one-time fee) $1300 One-time setup costs for simple cellular 

upload, and download functionality (either 
unprocessed (raw message) or processed 
(CSV)). No ongoing costs. 

Addition of enhanced PID capability, by OEM50 
Chrysler / Dodge / Jeep $16,300  
Ford $4,600  
GM $84,400  
Honda / Acura $11,100  
Mazda $6,500 Enhanced PIDs only on 2007 and newer 
Nissan / Infiniti $5,900  
Toyota / Lexus / Scion $5,100  

 

                                                 
50 Costs for manufacturers other than those shown in this table are not available at this time, approximately one 
month required for addition of each vehicle manufacturer. These are one-time costs, not per datalogger. 
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If cellular transmission capability is desired with the dataloggers, costs for adding cellular 

transmission hardware to the dataloggers and costs for cellular transmission are incurred. For the 

200-vehicle plan, as described in Section 4.2, since 267 dataloggers would initially be sent to 

participants, 267 cellular communication accounts would also be needed initially. In the unlikely 

case that all 267 vehicles and their dataloggers remain participating for the full year, then the 

200-vehicle study will have collected data on 267 vehicles. If during the year a vehicle stops 

participating and project management decides not to replace the lost vehicle, then the decision 

can be made to terminate the cellular communication account.  

The 200-vehicle study cellular cost for 1 year is $201,000, which is made up of 

$280/datalogger for hardware plus $39/datalogger per month for cellular service plus the one-

time Internet data repository fee of $1,300. The 800-vehicle study cellular cost for 1 year is 

$767,000, which is made up of $250/datalogger for hardware plus $39/datalogger per month for 

cellular service plus the one-time Internet data repository fee of $1,300.  

6.5.2 LiveDrive i2d 

Table 6-6 provides ERG-loaded cost estimates for the LiveDrive i2d logger. No costs are 

currently available for enhanced data collection on this logger. 

Table 6-6.  LiveDrive i2d Costs 

Item Cost Notes 
Rough cost for approx 200-300 units (each) $195  Units already include cell communication 
Communication service (monthly) $26 For 10 MB data, LiveDrive reports this should 

be adequate 
Addition of enhanced PID capability, by OEM 

Enhanced PID data collection is not currently an option with the LiveDrive i2d logger 
 
6.5.3 ERG Logger 

ERG developed a rough order of magnitude cost estimate of $300 per logger for the 

hardware associated with various functions of an OBDII datalogger. This estimate does not 

include any development, test, or assembly costs other than those associated with the printed 

circuit board assembly. This would be a datalogger attached to the DLC using an electrical cable 

with a physical design similar to the LiveDrive i2d unit and would have the features listed in 

Table 5-6, except enhanced PIDs data collection capability which would be additional cost, 

likely similar to the cost for adding enhanced PIDs to the HEMData DAWN Mini. It may be 

possible to develop a smaller logger which mounts directly onto the DLC, although this would 

likely increase overall unit costs. Also, the datalogger would not have Bluetooth or Wi-Fi unless 
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the need arose. The datalogger would have cellular communication capability at market-

competitive monthly rates. Data would be packaged in binary format for storage and 

transmission to minimize data storage and transmission costs. This cost estimate is based on a 

volume of about 100 pieces. However, it is important to understand this estimate does NOT 

include development, testing, or manufacturing costs, which would significantly add to the cost 

of the logger. This additional cost information can be provided as we move forward.  

6.6 Cost Summary for Two Sample Size Scenarios: 200 and 800 Vehicles 

A summary of the costs for proceeding beyond this pilot study are presented in this 

section. The Main Study work would be made up of three parts: preparation, data collection, and 

data processing. The preparation work is needed to prepare for the data collection effort. The 

costs for the preparation study are given in Table 6-7. The activities included in Sample and 

Recruitment Design and Datalogger Design must be done for the Main Study to be performed; 

they are not optional. The Other Analyses, which refer to the future proposed analyses in Section 

5.6 are optional but recommended.  

Table 6-7.  Estimated Costs for Preparation for Data Collection 

Task Detail Low High 

Preparation 
for Main 

Study 

Sample and Recruitment Design51 44,000 44,000 

Datalogger Design52 79,000 79,000 

Other Analyses53 0 not costed 

Total 123,000 ≥ 123,000 
 

A summary of estimated costs for the data collection portion of the Main Study is 

presented in Table 6-8 for 200 and 800 vehicles and assumed low and high cost options for each 

of those two sample sizes. For some of the major costs, vendors were not contacted. 

Accordingly, the costs in this section are just indications of costs for a main study, which are 

based on information gleaned from conversations with people in the industry, as well as 

experience in doing work of a similar nature in the past. All costs include using only the HEM 

Data DAWN Mini datalogger, since the i2d datalogger was not able to be demonstrated yet as a 

viable contender. All costs also include acquiring the enhanced-PID databases for the vehicle 

manufacturers listed at the bottom of Table 6-5.  

 

                                                 
51 Consists of activities described inTable 6-1 A, B, C, D, E, and F. 
52 Consists of activities described inTable 6-2 a, b, and c. 
53 Other analyses include any of the studies described in Section 5.6 Proposed Future Analysis or any other studies. 
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Table 6-8.  Estimated Data Collection Costs  
for 200- and 800-Vehicle Scenarios 

Task Detail 
200 Vehicles 800 vehicles 

Low High Low High 

Recruitment  
and  

Sampling 

Fleet characterization and 
filtering54 84,000 84,000 192,000 192,000
Participant interaction and 
management55 26,000 26,000 84,000 84,000

Sources of drivers/vehicles56 11,000 253,000 44,000 495,000
Total 121,000 363,000 320,000 771,000

Data  
Collection 

Tailoring for each vehicle57 40,000 40,000 160,000 160,000
Datalogger logistics + 
maintenance58 172,000 266,000 687,000 826,000

Data management59 0 38,000 0 154,000

Incentives60 37,000 154,000 147,000 617,000
Total 249,000 498,000 994,000 1,757,000

Datalogger 

Datalogger basic hardware61 234,000 234,000 607,000 607,000

Cellular data + hardware62 0 201,000 0 767,000

Enhanced PID costs63 134,000 134,000 134,000 134,000
Total 368,000 569,000 741,000 1,508,000
Total 738,000 1,430,000 2,055,000 4,036,000

 
 

Table 6-9. Estimated Data Post-Processing Costs  
for 200- and 800-Vehicle Scenarios 

Task Detail 
200 Vehicles 800 vehicles 

Low High Low High 

Data  
Processing 

Acquire/Link associated data64 31,000 31,000 31,000 31,000

Presentation of data65 83,000 83,000 123,000 123,000

Data archiving66 5,000 24,000 5,000 24,000
Total 119,000 138,000 159,000 178,000

                                                 
54 Consists of activities described inTable 6-1 I and L. 
55 Consists of activities described inTable 6-1 H, J, and K. 
56 Consists of activities described inTable 6-1 G. 
57 Consists of activities described inTable 6-3 d. 
58 Consists of activities described inTable 6-3 e, f, g, h, i, j, k, n, o, p, q, r, and t. 
59 Consists of activities described inTable 6-3 l and m. 
60 Consists of activities described inTable 6-3 s. 
61 See Section 6.5.1 for details. 
62 See Section 6.5.1 for details. 
63 See bottom of Table 6-5. 
64 Consists of activities described inTable 6-4 u and v. 
65 Consists of activities described inTable 6-4 w and y. 
66 Consists of activities described inTable 6-4 x. 
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Within each of the two sample size scenarios, we have tried to estimate different costs for 

sub-scenarios that we call “Low” and “High.” While these low and high costs give some 

indication of the range of costs that are possible by making significant changes to the project 

scope, other modifications to the scope may produce project costs that are outside the range 

defined by the low and high values.  

A summary of the data processing costs is provided in Table 6-9. 

The results shown in Tables 6-7, 6-8, and 6-9 indicate that, for the listed scope, the 

expected cost to acquire one year of second-by-second data is from about $3,700 to $7,200 per 

vehicle for a 200-vehicle sample and is from about $2,600 to $5,000 per vehicle for an 800-

vehicle sample, plus pre- and post-processing costs of about $1,300 per vehicle for a 200-vehicle 

sample and $400 per vehicle for an 800-vehicle sample. These per-vehicle costs are equivalent to 

the cost of a few chassis dynamometer tests. 
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7.0 Appendices 
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Appendix A 
Technical Approach for Stratified Sampling 
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The measure of precision we would use is the standard error of the mean annual fuel 

consumption for the average fleet vehicle. The standard error of a quantity is the standard 

deviation of its error. We want to allocate the data points to be collected among the strata so as to 

minimize the standard error of the mean annual fuel consumption. 

Suppose the total size of the sample of vehicles to be instrumented has a value n, which 

has been selected. The subject of this appendix pertains to the benefits that can be gained by 

stratification. We first discuss the issues qualitatively, and subsequently we present the equation 

for the optimal sample size by stratum. The equations pertaining to stratified sampling discussed 

in this appendix are presented by Gilbert (1987). 

One factor is the fraction of the population that falls in a given stratum. The larger this 

fraction is, the more data points one would like to take from the stratum. This concept is 

conceptually clear and will not be elaborated. 

A second factor is the variability in the stratum. It can be shown mathematically that it is 

advantageous to collect more data points from strata with large variability than from strata with 

small variability. 

A simple, strictly hypothetical example illustrates this idea conceptually. Suppose there 

are only two strata, stratum one has no variability at all, and stratum two contains non-negligible 

variability. If one data point is collected from stratum one, the annual fuel consumption for that 

stratum is known exactly. Any more data points taken from that stratum are wasted; no 

additional information is gained. 

However, the uncertainty in the mean annual fuel consumption for stratum two becomes 

more and more precise as the number of data points taken from that stratum increases. Thus, in 

this example, it would be beneficial to take one data point from the stratum with no variability 

and the rest of the points from the stratum with variability. 

This example is hypothetical, but it illustrates the fact that it is advantageous to take more 

data points from strata with a higher degree of variability. In the real situation of interest, the 

annual fuel consumptions in all strata have variability, but the degree of variability differs from 

stratum to stratum. 

We are now ready to state the equation for the optimal sample size for a given stratum: 
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where 
 

nh = the sample size in stratum number h, 
n = the total sample size for all strata,  
Wh = the fraction of the actual population that falls in stratum h,  
L  = the number of strata, and 
σh =  the standard deviation of the annual fuel consumptions in stratum h.  

 
This equation follows conceptual guidelines. The number of points taken from a stratum 

is directly proportional to the fraction of the population comprised of that stratum (the fraction is 

Wh). Also, the number of points from a stratum is directly proportional to σh, which is a measure 

of the variability in the stratum. 

The estimate of the population mean, , is the weighted mean of the stratum means, 

 

 

 
The point here is that the strata are not sampled proportionately to their actual 

representation in the population. If a simple arithmetic average of the complete stratified sample 

were calculated, the different strata would be weighted disproportionately to their representation 

in the population, and a biased average would result. The weighting scheme in the calculation of 

accounts for the nature of the sample and produces an unbiased estimate of the population 

mean. The formulation here produces the unbiased estimate of the population mean with the 

minimum error variance, given the total sample size, n. The standard error of the mean is the 

square root of its error variance.  

The standard error of this weighted mean estimate is as follows: 
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where fh is the number of data points in stratum h divided by the population size of this 

stratum. 

The factor (1-fh) accounts for the finitude of the population in stratum h. If the sample 

sizes are small compared to the sizes of the strata in the population, this factor can be ignored. 

The factor (1-fh) can be ignored (set to 1) in the calculations since the size of the vehicle sample 

will be much smaller than the size of U.S. vehicle fleet. 

In practice the true standard deviations, σh, are not known and are estimated on the basis 

of historical data that exist before the planned stratified sampling effort. The sample standard 

deviation, sh, based on a sample, xh,i, i=1 to m, is: 

 

 

 
where  is the arithmetic mean.  
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Appendix B 
Model 11 Performance Plots 
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ERG’s subcontractor SGS ETC performed in-laboratory on-chassis dynamometer testing 

of a 2009 Saturn Outlook using several different test cycles. These tests were conducted at the 

SGS ETC laboratory in Aurora, Colorado, and the cycles used were the EPA standard city cycle 

(FTP75), the EPA standard highway fuel economy cycle (HFET), and the aggressive drive cycle 

(US06). Fuel consumption and emissions were measured on a second-by-second basis during 

each test, and standard protocols were used to determine the second-by-second fuel consumption 

and emissions over each drive cycle. Standard SAE J1979 OBDII data was also logged 

throughout the testing using the HEM Data DAWN Mini datalogger. The analysis, which is 

described in Section 5.5.3, compares fuel rate calculated from dynamometer data with fuel rate 

calculated from OBD data.  

The 2009 Saturn Outlook was equipped with a 3.6L V6 gasoline direct injection (GDI) 

engine. The vehicle was equipped with a mass air flow sensor and a narrow-band oxygen sensor. 

The fuel used was EPA Tier II certification fuel with no ethanol. The specific gravity was 

0.7389, and the API Gravity was 60.0.  

During all vehicle operation on the dynamometer, the HEM Data logger was installed on 

the Saturn’s OBD port. The dynamometer testing produced two datasets. One set was obtained 

from the HEM Data logger and included data from standard PIDs. The other set was obtained 

from the dynamometer test cell and included measurements from the dynamometer and from the 

constant volume sampling system. 

The 2009 Saturn Outlook was tested on a chassis dynamometer over three cycles: the 

HFET, US06, and FTP75 driving schedules. The FTP75 test was made up the traditional three 

bags: a cold start for Bag 1, which was immediately followed by Bag 2, then a 600-second soak, 

which was followed by Bag 3. Two HFETs and two US06s were run with the first of each pair 

being used to warm up the vehicle for the dynamometer data acquisition on the second of each 

pair. 

The following figures compare fuel rate calculated from dynamometer measurements of 

exhaust concentrations and flow rate, modeled fuel rate based on OBD mass air flow and OBD 

commanded equivalence ratio, an indicator of fuel cut-off based on OBD commanded 

equivalence ratio, an indicator variable of cold starts based on OBD commanded equivalence 

ratio, and vehicle speed. See the description in Section 5.5.3 for detailed descriptions of the 

variables shown in the following figures. 
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Figure B-1.  HFET Part 1 
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Figure B-2.  HFET Part 2 
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Figure B-3.  US06 Part 1 
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Figure B-4.  US06 Part 2 
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Figure B-5.  FTP75 Bag 1 Part 1 
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Figure B-6.  FTP75 Bag 1 Part 2 
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Figure B-7.  FTP75 Bag 2 Part 1 
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Figure B-8.  FTP75 Bag 2 Part 2 
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Figure B-9.  FTP75 Bag 3 Part 1 
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Figure B-10.  FTP75 Bag 3 Part 2 
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