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1. Introduction 
 
This supporting document provides a detailed explanation of the methodology used by Mao, 
Chen, Comer, and Rutherford (2019) in Costs and benefits of a shipping emission control area in 
the Greater Pearl River Delta region.1 Using a geospatial, hourly ship emissions inventory from 
2015 (Olmer, Comer, Roy, Mao, & Rutherford, 2017), we projected these emissions to 2030 and 
estimated how a 200-nautical mile (nm) Emission Control Area (ECA) along the coast of China 
could reduce air pollution and improve air quality and public health. Emission reductions were 
translated to air quality improvements using the widely accepted regional chemical transport 
model Weather Research and Forecasting, which we combined with Chemistry (WRF-Chem). 
Health-related benefits were modeled with a log-linear concentration-response function that links 
changes in air pollution concentration with health endpoints. These benefits were then compared 
with compliance costs to shipowners.  

2. Detailed methodology  

2.1 Emissions inventory 
Baseline emissions were estimated for 2015, at which time no regional policies to control 
oceangoing vessel (OGV) emissions were in effect in China. Olmer et al. (2017) provides a step-
by-step, detailed methodology that explains how raw automatic identification system (AIS) and 
ship technical data are used to develop air pollution and greenhouse gas (GHG) inventories. We 
retrieved the 2015 inventory using the ICCT Systematic Assessment of Vessel Emissions 
(SAVE) model. The SAVE model is a Python-based tool used to generate activity-based 
emission inventories based on ship activity data produced by the AIS and vessel characteristics 
data.2 
 
Based on the geospatial baseline emissions inventory in 2015, we projected future shipping 
emissions in 2030 under two scenarios: business as usual (BAU) and with a 200-nm Chinese 
ECA. This allowed us to connect emission reductions from the ECA policy with improvements 
in ambient air quality and public health. The ECA extending 200 nm from China’s coastline 
(shown in Figure 1) that we evaluated also allows for a direct comparison of results with the 
North American ECA. The delineation of a practical or most cost-effective Chinese ECA is 
beyond the scope of this study, but an analysis of potential ship rerouting for ECAs narrower 
than 100 nm is covered in Mao and Rutherford (2018).   
 
Figure 1 captures the study region for this analysis. Domain 1 (resolution: 36 × 36 km per grid 
cell) is also the largest and most coarse domain for the transport-and-fate model. Two nested 
domains (Domain 2 and Domain 3) have finer resolutions of 12 × 12 km and 4 × 4 km per grid 
cell, respectively.  
                                                
1 The report can be found on ICCT’s website at www.theicct.org/publications/pearl-river-delta-eca-201907 
2 Our AIS data vendor is exactEarth Ltd. and our ship registry data vendor is IHS Fairplay. 
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Figure 1. Study region, with three domains defined for air quality modeling. 

 
In order to project a gridded 2030 emissions inventory, we developed several unitless scaling 
factors. These inflate the gridded hourly emissions of the baseline 2015 inventory to reflect three 
factors: future traffic growth, the fleet’s fuel efficiency improvement, and environmental 
regulations. The overall equation for projection can be described as follows: 
 

 𝐸.,/,0121 = ∑ (𝐸.,/,0167 ∗ 𝑇𝑆𝐹< ∗ 𝐸𝐴𝐹< ∗ 𝑃𝐴𝐹/,?)ABC
AB1  (1) 

 
Where: 
i = ship i 
j = pollutant j 
k = ship class k, to which ship i belongs  
l = ship engine type l, which corresponds to ship i 
𝐸.,/,0121 = emissions (g) for ship i and pollutant j in 2030 
𝐸.,/,0167 = emissions (g) for ship i and pollutant j in 2015 
𝑇𝑆𝐹< = trade scaling factor for ship class k  
𝐸𝐴𝐹< = efficiency adjustment factor for ship class k 
𝑃𝐴𝐹/,? = policy adjustment factor for pollutant j and engine type l 

 

2.1.1 Trade scaling factor 
 
Trade scaling factors (𝑇𝑆𝐹<) are defined as the impact of trade growth on ship emissions, holding 
everything else constant. As trade grows, demand for shipping activity grows, and so does 
energy use and air pollution. This increased demand can be met by introducing more ships or 
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making existing ships travel more frequently, or a combination of both. For simplicity’s sake, in 
this modeling we assumed that the fleet adjusts by making more frequent trips. Based on 
Equation 2, which calculates the number of trips required to move a certain cargo type by the 
corresponding ship class, the growth rate in trade volume is essentially the growth rate in annual 
trips made to move that specific cargo, holding everything else constant. 
 

 𝑁< =
EF

GHIF∗JK
  (2) 

Where: 
k = ship class k, with corresponding cargo type k  
𝑁< = total number of trips made to move cargo type k 
𝑉< = total volume of cargo type k to be moved, tonnes 
𝐷𝑊𝑇< = deadweight tonnage of ship class k, maximum volume of cargo that can be carried, 

tonnes 
LF = load factor, unitless, ratio of the actual volume of cargo carried to DWT, assumed to 

be 0.75 across different ship classes 
 
With the additional assumption that 2030 ship speeds are equal to those in 2015, the change in 
annual number of trips directly impacts the total annual fleet activity, measured in hours. 
Because the SAVE model calculates ships’ fuel consumption using Equation 3, the trade growth 
impacts fuel consumption, and thus emissions, via the change in ship activity n. 
 

 𝐹𝐶. = ∑ (𝑃PQRSCP,. ∗ABC
AB1 1	ℎ𝑜𝑢𝑟) ∗ 𝐸𝐹QCQYZ[,\]^/𝐸𝐹 aQ?,\]^  (3) 

Where: 
n = annual activity (hours) for ship i 
𝐹𝐶. = annual fuel consumption for ship i 
𝑃PQRSCP,. = hourly power demand (kilowatt, or kW) for ship i 
𝐸𝐹QCQYZ[,\]^  = energy-based CO2 emissions factor, in grams per kW hour (g/kWh) 
𝐸𝐹 aQ?,\]^  = fuel-based CO2 emissions factor (g CO2/g fuel) 

 
Trade scaling factors (𝑇𝑆𝐹<) are cargo-specific trade growth rates from 2015 to 2030. Our trade 
forecast model estimated trade growth rates from 2015 to 2030 based on historical data published 
by the United Nations Conference on Trade and Development (UNCTAD, n.d.).  
 
UNCTAD publishes seaborne trade volume by region and by major cargo type annually. For our 
study region, we looked at UNCTAD’s data for Asian developing countries from 2006 to 2015 
and projected out to 2030.3 During this period, world seaborne trade will continue to grow as 
economies become more and more interrelated and as transportation costs fall. Asia is expected 
to grow to be the center of international trade (Shanghai International Shipping Institute, 2015).  
 
Containerized cargo and bulk cargo also have solid growth momentum, but their expansion will 
likely occur at a slower rate than overall trade activity. Growth in liquefied natural gas (LNG) 
transport should also accelerate, whereas crude oil trade is expected to slow in the long term. 

                                                
3 We selected 2006 as the start year as the statistical caliber changes over the years, and because since 2006 the key 
statistics we needed for projection remained constant. 
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However, when we tried to fit historical data with a trend line and predict out to 2030, we found 
cases where the trend lines that were statistically the best fit did not reflect consensus projections 
for future activity. To rectify our extrapolation method with long-term projections, we used the 
following approach: 

1. Fit the historical data with trendlines using both power and linear functions. The two 
resulting growth rates from 2015 to 2030 are set as the ICCT’s lower (of the power and 
linear, whichever is smaller) and upper (of the power and linear, whichever is larger) 
bound of this analysis. 

2. UNCTAD provides a long-term outlook for maritime transport in its 2017 report, and it 
includes cargo-specific trade growth estimates from multiple sources. We used those data 
to set low, medium, and upper bounds of third-party estimates. 

3. Among these five growth rates, we then chose the one that is the average of the ICCT-
extrapolated results, as summarized in Table 1. In two cases where our modeled rates 
were on the higher end— for liquefied bulk carriers and for crude oil tankers—the 
medium value from UNCTAD’s reference was chosen. 

4. The cargo growth rates were then assigned to ship classes, as summarized in Table 2. 
 
Table 1. Trade growth rates for different cargo types from 2015 to 2030 

Cargo type Annualized growth rate Total growth rate 
UNCTAD referenced (2017) ICCT extrapolated Chosen 2015–2030 
low medium high low high 

Containerized cargo 4.6% 4.8% 5.0% 2.8% 8.2% 5.5% 120% 
Major dry bulk 3.6% 4.6% 5.6% 2.5% 3.4% 3.0% 56% 
Liquified natural gas  1.7% 2.2% 2.7% 2.5% 4.0% 3.3% 62% 
Crude oil 1.2% 1.9% 2.5% 0.0% 3.3% 1.9% 32% 
Liquid bulk 1.7% 2.1% 2.5% 2.5% 2.5% 2.1% 37% 
General cargo 2.7% 2.6% 5.0% 3.8% 75% 
Cargo-other 2.7% 2.6% 5.0% 3.8% 37% 
Passenger 2.7% 2.6% 5.0% 3.8% 75% 

 
Table 2. Assignment of cargo types to major ship classes 

Cargo type Ship class 
Containerized cargo  Container ships 
Major dry bulk cargo, like coal, grain, and ores Bulk carriers 
Crude oil, and petroleum products Oil tankers 
Liquified natural gas LNG carriers 
Minor dry bulk cargo, like steel, minerals and agribulks General cargo ships 
Organic or inorganic chemicals  Chemical tankers 

 

2.1.2 Efficiency adjustment factors (𝐸𝐴𝐹<) 
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Efficiency adjustment factors (𝐸𝐴𝐹<) capture reductions in air pollution due to fleetwide energy 
efficiency improvements. These include a baseline efficiency gain due to natural fleet turnover 
and additional benefits from the Energy Efficiency Design Index (EEDI) mandates set by the 
International Maritime Organization (IMO).  
 
Even without regulations, newer ships would naturally be more energy efficient than older ones, 
because fuel savings are economically attractive to carriers. Our fleet-turnover model is adapted 
from the one used in the technical support document for the North American ECA application 
(U.S. Environmental Protection Agency [EPA], 2009), with the following assumptions: 

§ Technical data for the baseline fleet in 2015 is taken directly from the IHS Fairplay ship 
database 

§ The total number of ships remains unchanged over time4 
§ A ship’s useful life is 25 years 
§ Each year, ships that reach the end of their useful life are replaced with new ships built in 

that year that have average ship characteristics of the existing fleet 
 
The model output is a series of fleet profiles for each year from 2015 to 2030. For ships that 
appeared in our study region in 2015, relevant fleet characteristics for 2015 and 2030 are 
summarized in Table 3. 
  

                                                
4 In reality, increased transport demand through 2030 would be met by some combination of greater ship size, 
increased operational hours, and more ships. For simplicity’s sake, we held the number of ships constant and 
assumed that additional supply was provided by increasing only ship size and hours at sea. This approach should 
somewhat underestimate the number of new ships brought into service in the future. As a consequence, there may be 
small second-order effects on the results that come from underestimating fuel efficiency gains through the EEDI and 
Tier III NOx compliance rates from new-build ships after the ECA takes effect in 2025. 
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Table 3. Average ship characteristics by ship class in 2015 and 2030  

Ship class Capacity 
bin 

Average ship characteristics 
Main engine power 

(kW) 
Deadweight tonnage 

(tonnes) Length (m) Design speed 
(knots) 

2015 2030 2015 2030 2015 2030 2015 2030 

Container ship 

1 5,790 6,150 8,840 9,430 126 130 16 16.3 
2 12,000 12,000 19,200 18,500 166 162 18.9 18.9 
3 21,000 21,400 34,500 35,100 208 210 21.4 21.6 
4 35,500 34,700 54,400 53,900 263 259 23.4 23.3 
5 52,900 41,300 73,700 68,300 289 266 24.7 22.8 
6 60,200 60,100 109,000 109,000 330 329 24.3 24.3 
7 65,900 65,900 150,000 150,000 366 366 24 24 
8 61,700 61,700 182,000 182,000 395 395 20.4 20.4 

Bulk carrier 

1 1,720 1,710 4,790 4,990 92.3 93.5 11.5 11.4 
2 5,790 5,790 27,600 28,100 168 169 13.8 13.7 
3 8,330 8,420 50,800 51,400 189 189 14.3 14.3 
4 9,980 10,100 76,900 78,900 223 218 14.4 14.3 
5 17,000 17,200 171,000 172,000 287 287 14.5 14.5 
6 20,100 19,900 244,000 239,000 315 313 14.6 14.6 

General cargo ship 
1 1,280 1,230 2,820 2,870 80.6 80.9 11.2 11.1 
2 3,120 2840 7,180 7,030 108 109 12.7 12.4 
3 7,200 5,580 24,900 18,700 159 139 14.4 13.6 

Chemical tanker 

1 1,850 1,900 3,220 3,400 86.3 88.6 12.2 12.1 
2 3,210 3,010 7,620 7,450 112 112 13 12.8 
3 4,890 4,880 15,300 15,400 135 136 13.8 13.8 
4 8,710 7,320 43,500 35,200 180 164 14.7 14.3 

Oil tanker 

1 1,640 1,590 3,130 3,180 83.3 83.3 11.6 11.4 
2 2,800 2,790 6,830 6,810 108 109 12.5 12.4 
3 4,010 4,150 14,300 14.700 139 143 12.8 12.9 
4 8,900 9,070 45,300 45,900 183 182 14.6 14.7 
5 12,100 12,100 74,000 74,400 228 228 14.9 14.9 
6 13,500 13,700 109,000 110,000 245 246 14.9 14.9 
7 17,700 15,400 156,000 140,000 274 240 15.3 14.7 
8 27,500 28,000 308,000 310,000 333 333 15.6 15.6 

Liquified gas tanker 
1 3,920 4,220 7,030 7,830 110 114 14.2 14.4 
2 22,800 20,300 68,900 60,000 260 235 18.2 17.5 
3 36,900 36,900 122,000 122,000 326 326 19.2 19.2 

Cruise ship 

2 7,030 7,730 1,250 1,370 111 115 16 16.1 
3 19,100 29,900 3,650 5,190 186 206 19.3 19.8 
4 54,700 63,700 8,260 9,310 270 290 22.6 21.9 
5 75,100 67,200 12,300 9,770 309 308 22.6 21.4 

Roll-on/roll-off 1 2,780 1,700 2,800 2,010 81.8 69.2 11.5 10.3 
2 12,400 11,800 17,400 19,900 172 171 18 16.6 

Refrigerated bulk 
carrier — 4,680 4,170 5,990 5,480 115 111 15.8 15.4 

Vehicle carrier — 13,400 13,600 18,300 18,400 193 194 19.6 19.6 
Tug boat — 3,390 3,520 357 372 37.9 38.1 12.5 12.6 

Fishing boat — 1,680 1,700 590 603 61.9 62.3 12.2 12.1 
 
As shown in Table 3, as ships retire and are replaced by new ships, the fleet becomes naturally 
more efficient. This is because newer ships tend to be bigger and have newer engines that burn 
less fuel while doing the same amount of transport work. According to Equation 2 and Equation 
3, the increase in the fleet’s deadweight tonnage (𝐷𝑊𝑇<, a surrogate for fleet cargo-carrying 
capacity) and the increase in the fleet’s engine power (𝑃PQRSCP,.) affect total fuel consumption in 
opposite ways. That is, higher 𝐷𝑊𝑇< tends to reduce the total number of trips needed to move 
the cargo and 𝑃PQRSCP,. increases the amount of fuel consumed per trip.  
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Additionally, 2030 fleetwide efficiency very likely will outperform natural improvement due to 
incentives provided by IMO regulations like the EEDI. The EEDI mandates that ships built after 
a certain date be more energy efficient than the baseline fleet in terms of g CO2/tonne-mile 
(International Maritime Organization, 2016). For example, ships built after 2025 need to be 30% 
less carbon intensive than a predefined EEDI baseline (Hon & Wang, 2011)5. Assuming a 
gradually decreasing survival rate for a fleet with increasingly longer in-service history (Wang & 
Lutsey, 2013), we estimated that implementing current EEDI standards alone would reduce the 
fuel intensity of an average ship by about 20% in 2030 compared to 2015 levels. As a result, we 
adopted this number to construct the efficiency adjustment factor. This assumption is similar to 
the 22.5% figure used for the Third IMO Greenhouse Gas Study (Smith et al., 2015) to account 
for the EEDI’s impact on projected emissions in 2030.  
 
As a result, the efficiency adjustment factors (𝐸𝐴𝐹<) are calculated with the following equation: 
 
 𝐸𝐴𝐹< =

bF,^cdc
bF,^cef

∗ 	GHIF,^cef
GHIF,^cdc

∗ (1 − 20%)  (4) 
Where: 
𝑃<,0121 = average power demand (kW) for ship class k in 2030 
𝑃<,0167 = average power demand (kW) for ship class k in 2015 
𝐷𝑊𝑇<,0167 = average deadweight tonnage, surrogate for cargo carriage per voyage, for ship class 

k in 2015 
𝐷𝑊𝑇<,0121 = average deadweight tonnage, surrogate for cargo carriage per voyage, for ship class 

k in 2030 
 

2.1.3 Policy adjustment factors (𝑃𝐴𝐹/,?) 

 
Emission factors, which are linked with fuel consumption, determine the amount of emissions 
for different pollutants. They vary by ship engine type and fuel type, and are influenced by 
environmental regulations. ECAs are designed to control conventional air pollutants including 
sulfur oxides (SOx), nitrogen oxides (NOx), and particulate matter (PM). Therefore, projections 
of future emissions of these pollutants need to be adjusted for future changes in environmental 
policies.  
 
Policy adjustment factors are defined as ratios of emission factors under 2030 scenarios (BAU 
scenario and ECA-control scenario) compared to the 2015 baseline for each pollutant. Unlike 
trade scaling factors and efficiency adjustment factors, policy adjustment factors vary by location 
for different scenarios. Within SAVE, a location identifier representing one of the following 
locations relevant to a Chinese ECA is assigned to each grid cell: 

❏ At berth 
❏ Within 12 nm around Hainan Island 

                                                
5 The EEDI standards are recently tightened. IMO moved up the start date of Phase 3 of its Energy Efficiency 
Design Index (EEDI) standards for new ships by three years, from 2025 to 2022, for five ship types. Details can be 
found here: https://theicct.org/blog/staff/mepc74. 
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❏ Within the 200-nm ECA 
❏ Outside of the 200-nm ECA 

 
Table 4 summarizes all 𝑃𝐴𝐹/,?s for this analysis, and the following sections explain in detail how 
those adjustment factors were derived for each pollutant. 
 
Table 4. Policy adjustment factors for SOx, PM10, and NOx in emissions projection 

Pollutants Scenarios Locations 
Policy adjustment 

factors Underlying policies 
2015 2030 

SOx 

ECA-
control 

Inside ECA 1 0.04 Fuel sulfur content ≤ 0.1% m/m 
Outside ECA 0.2 Fuel sulfur content ≤ 0.5% m/m  

BAU At berth 1 0.04 Fuel sulfur content ≤ 0.1% m/m  
All other 0.2 Fuel sulfur content ≤ 0.5% m/m 

PM10 

ECA-
control 

Inside ECA 1 0.11–0.17 Fuel sulfur content ≤ 0.1% m/m 
Outside ECA 0.48–0.55 Fuel sulfur content ≤ 0.5% m/m  

BAU At berth 1 0.11–0.17 Fuel sulfur content ≤ 0.1% m/m  
All other 0.48–0.55 Fuel sulfur content ≤ 0.5% m/m 

NOx 

ECA-
control 

Inside ECA 1 0.2–0.25 Ships built after 2025 complying with Tier III 
Outside ECA 0.79–1 All ships complying with Tier II or Tier I 

BAU At berth 1 0.79–1 All ships complying with Tier II or Tier I 
All other All ships complying with Tier II or Tier I 

 
 
2.1.3.1 Sulfur oxides 
Emission factors for SOx are determined by fuel sulfur content as shown in Equation 5. 
Currently, the global average sulfur content for marine fuel is around 25,000 ppm (Smith et al., 
2015). Proposed environmental policies that will impact future fuel sulfur content include the 
following: 

❏ The IMO 2020 global sulfur limit. Starting in 2020, all IMO-regulated vessels must use 
fuel with less than 5,000 ppm sulfur content globally.6 This will result in an 80% 
reduction in the SOx emission factor from 2015 to 2030 in the BAU scenario. 

❏ China’s national domestic emission control area (DECA) policy. Starting in 2019, all 
ships operating within China’s territorial waters (i.e., within 12 nm of its coastal baseline) 
must use fuel that comports with the IMO’s post-2020 sulfur limit. In addition, all ships 
traveling within two inland waterway systems and within 12 nm of Hainan Island will 
need to use marine fuel with less than 1,000 ppm sulfur content starting in 2020 and 
2022, respectively.7 When our analysis took place, China’s national DECA policy was 
not final yet. The proposal at that time included a requirement that ships burn 1,000 ppm 
sulfur fuel while berthing at ports within the DECA region, and it was taken out of the 
final rule. Our analysis, which was based on the proposal, is thus overestimating the 

                                                
6Almost all OGVs apply this rule. The few exceptions include, but are not limited to, fishing vessels, leisure ships, 
research, and rescue ships. 
7 The two inland waterway systems are the Yangtze River and the Pearl River. 
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effectiveness of the national DECA policy in reducing SOx and PM10 emissions, but only 
slightly.   
 

Equation 5 summarizes the relationship between the sulfur content of marine fuel and its 
resulting SOx emission factor.  
 
 𝐸𝐹 aQ?,k]l = 2 ∗ 0.97753 ∗ 𝑆𝐶 aQ? (5) 
Where: 
𝑓𝑢𝑒𝑙 = fuel type 
2*0.97753 = 0.97753 is the fraction of fuel S converted to SOx and 2 is the ratio of molecular 

weight of SOx and S 
𝐸𝐹 aQ?,k]l  = fuel-based emissions factors for SOx, in g (SOx)/g (fuel) 

𝑆𝐶 aQ? = sulfur content (% m/m) of a certain fuel 
 
If a 200-nm Chinese ECA is in place in 2030, then the entire region will enforce the 1,000 ppm 
fuel sulfur requirement. Thus, the 96% reduction in the SOx emission factor was applied to the 
whole ECA region for the ECA-control scenario.  
 
2.1.3.2 Particulate matter (PM10) 
Similar to SOx, the PM10 emission factor is related to fuel sulfur content as shown in Equations 6 
and 7.8 As a result, policies that reduce SOx naturally have a spillover effect on PM10, even if 
PM10 is not a direct target. Since PM10 emission factors are also related to ship specific fuel oil 
consumption (SFOC)s, the impacts of policy on PM10 emission factors are also ship-specific. On 
average, the IMO 2020 global sulfur limit will result in a 50% reduction in the PM10 emission 
factor and the ECA’s sulfur limit will reduce the PM10 emission factor by approximately 90%.  
 
 𝐸𝐹QCQYZ[,buec,vK] = 1.35 + 𝑆𝐹𝑂𝐶 ∗ 7 ∗ 0.02247 ∗ (𝑆𝐶vK] − 0.0246) (6) 
Where: 
𝐻𝐹𝑂 = heavy fuel oil, or residual oil 
𝐸𝐹|}~QY,buec,vK] = energy-based PM emissions factor (g/kWh) of heavy fuel oil (HFO) 
𝑆𝐹𝑂𝐶 = specific fuel oil consumption, g (fuel)/kWh, a value specific to engine types 
𝑆𝐶vK] = sulfur content (% m/m) of HFO 

 
 𝐸𝐹QCQYZ[,buec,u�] = 0.23 + 𝑆𝐹𝑂𝐶 ∗ 7 ∗ 0.02247 ∗ (𝑆𝐶u�] − 0.0024) (7) 
Where: 
𝑀𝐺𝑂 = marine gas oil, or distillate fuel 
𝐸𝐹|}~QY,buec,u�] = energy-based PM emissions factor (g/kWh) of marine gas oil (MGO) 
𝑆𝐶u�] = sulfur content (% m/m) of MGO 

 
The 𝑆𝐹𝑂𝐶s used to convert energy-based emission factors to fuel-based emission factors in this 
analysis are included in Table 5, which is adapted from Smith et al. (2015). 
 

                                                
8 PM10 is considered to be equivalent to PM in terms of emission factors (Smith et al., 2015). We did not evaluate 
direct tailpipe PM2.5 emissions, but their emission factors can be understood as 92% of PM10 (U.S. EPA, 2009). 
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Table 5. 𝑆𝐹𝑂𝐶	assumptions  

Engine type Engine Fuel type SFOC (g/kWh) 
Main diesel engine 
 
 
 

Slow-speed diesel  HFO 195 
MGO 185 

Medium-speed diesel HFO 215 
MGO 205 

High-speed diesel HFO 215 
MGO 205 

Gas turbine n/a HFO 305 
MGO 300 

Steam turbine n/a HFO 305 
MGO 300 

LNG engine n/a LNG 166 
Auxiliary diesel 
engine 
 

Medium- and high-speed 
diesel 

HFO 227 
MGO 217 

 
2.1.3.3 Nitrogen oxides  
Determining NOx emission factors is a bit more complicated because the IMO regulates NOx by 
“Tier” according to when the ship was built. Therefore, the projection used here combines the 
fleet turnover model, which outputs the fleet’s age distribution in any future year, with scaling 
factors for NOx emission factors by ship class and geography (i.e., within or outside of an ECA).  
 
All ships built after 2011 should be IMO Tier II compliant. The IMO Tier III regulations apply 
only in ECA regions, and to ships built after the effective date of each individual ECA, if that 
date is not earlier than 2016. For example, the North American ECA, effective since 2012, 
requires that ships built after 2016 be Tier III compliant when sailing in its region. The North Sea 
and Baltic Sea ECAs, meanwhile, require that ships built after 2021 be Tier III compliant when 
sailing within their regions.  
 
Tier III compliance is achieved primarily by installing NOx aftertreatment devices—either 
selective catalytic reduction (SCR) or exhaust gas recirculation (EGR)—on Tier II engines. Both 
technologies have been successfully demonstrated on OGVs, but with varying cost implications. 
SCR is less well suited than EGR for low-load operation and maneuvering in coastal and harbor 
areas; this is due to poor efficiencies at low exhaust temperatures. In the 2030 BAU scenario, no 
ships in our study region would be Tier III compliant. Ships that are Tier III compliant in other 
ECAs around the world can opt to shut down their NOx aftertreatment devices while navigating 
outside of designated ECAs. This returns them to Tier II status while keeping them “Tier III 
ready.” For the Chinese ECA scenario, we assumed that the 200-nm ECA entered into effect 
starting in 2025, meaning that only new ships built after 2025 that visited our study region need 
to be “Tier III ready” and Tier III compliant when entering the ECA.  
 
IMO NOx tier limits are set as a function of engine speed in revolutions per minute (rpm). With 
the fleet turnover model, each new-build ship was assigned an engine rpm averaged across the 
same engine type and ship class of the introduction year. With the build year and engine rpm, its 
NOx emission factor can be determined accordingly. Thus, the fleetwide impact of NOx emission 
factors can be summarized by ship class and then applied to the gridded baseline emissions 
inventory (see Table 6). 
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Table 6. Average NOx emission scaling factors by ship class, 2030 

Ship class Average 𝑃𝐴𝐹/,? for NOx emission factor 
Container ship 0.94 
Bulk carrier 0.96 
General cargo ship 0.92 
Chemical tanker 0.95 
Oil tanker 0.90 
Liquified gas tanker 0.95 
Cruise ship 0.80 
Roll-on/roll-off 0.92 
Refrigerated bulk carrier 0.84 
Vehicle carrier 0.95 
Tug boat 0.91 
Fishing vessel 0.80 

 

2.1.3.4 Other pollutants 
Although ECA policy targets only SOx, NOx, and PM10 emissions, we calculated emissions for 
other major pollutants as inputs into air quality modeling. 

❏ Carbon dioxide (CO2): The ECA policy does not impact CO2 emission factors. 
❏ Carbon monoxide (CO): The ECA policy does not impact CO emission factors. 
❏ Black carbon (BC): BC emission factors change with fuel type. ECA fuel sulfur 

regulations will be mostly achieved by switching to cleaner fuel types, and this will have 
an impact on BC emission factors. BC emission factors associated with different fuel 
types can be found in Comer, Olmer, Mao, Roy, and Rutherford (2017). 

❏ Methane (CH4): The ECA policy does not impact CH4 emission factors. 
❏ Nitrous oxide (N2O): N2O emission factors slightly change with fuel type. When 

switching from HFO to MGO, N2O emission factors increase to 0.0016 (g pollutant/g 
fuel) by about 6.25%.  

❏ Non-methane volatile organic compound (NMVOC): The ECA policy does not impact 
NMVOC emission factors. 

 

2.2 Air quality modeling 
To evaluate the impacts of a Chinese ECA on ambient air quality, we used air quality modeling 
to simulate concentrations of key air pollutants in 2030. Before describing the model, below, we 
first explain the relevant policy scenarios and key underlying assumptions. We used the regional 
chemical transport model WRF-Chem (Grell et al., 2005) version 3.5 for the ambient air quality 
estimation. The details of the model setup and key parameters are consistent with Chen et al. 
(2019). The model was run three times with different inputs, as described in Table 7.  
 
Table 7. Scenarios and assumptions for air quality modeling 

Scenario Name Inputs  Emission control policies for ships 
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S1 2030 without ship 
emissions 

2030 land emissions N/A  

S2 2030 BAU 2030 land emissions, 
2030 baseline ship emissions 

SOx and PM: IMO 2020 global sulfur limit 
and China national DECA 
NOx: IMO Tier II 

S3 2030 ECA-control  2030 land emissions,  
2030 control ship emissions  

SOx and PM: IMO 2020 global sulfur limit 
and China 200-nm ECA 
NOx: IMO Tier III for ships built after 2025 

 
The WRF-Chem model simulated air quality within the three domain sizes, all centered at the 
Greater Pearl River Delta (GPRD) region (see Figure 1). The largest model domain, with a 36 × 
36 km horizontal grid, covers half of Eastern China and neighboring South Asian countries. Two 
nested domains have finer resolutions of 12 × 12 km and 4 × 4 km, respectively. All three 
domains have 31 vertical levels, from the surface to 50 millibar atmospheric pressure. We used 
specified initial and lateral boundary conditions from the MOZART-4 global chemical transport 
model (Emmons et al., 2010), to account for the initial and background chemical concentrations. 

2.2.1 Meteorological data 
Due to the lack of future meteorological data, the model input the 6-h temporal resolution 
meteorological data from the Global Forecast System for the year of 2015 (National Centers for 
Environmental Prediction, n.d.). The simulated horizontal winds, temperature, and humidity 
were nudged to the respective meteorological fields. To find the upper bound impacts on air 
quality from ship emissions, we modeled the month of July, which is the monsoon season and 
when southeastern winds transport ship emissions from the sea to the land (Lu et al., 2009). It is 
likely that the impacts from ship emissions on the GPRD cities are at their maximum during this 
season. Some studies also have shown that the highest contributions of ship emissions toward 
land occur in July (Chen et al., 2018; Liu et al., 2018). The time period of the model simulation 
was the entire month of July, with four spin-up days from June 27 to June 30. The model 
generated hourly concentrations for every simulation day. Further analysis, including model 
evaluation and monthly average concentrations of pollutants, was based on the daily average 
concentrations from July 1 to July 31. 

2.2.2 Chemical mechanisms 
The model used the Regional Acid Deposition Model version 2 (RADM2) from Stockwell, 
Middleton, Chang, and Tang (1990) for the gas-phase chemical mechanism to predict the highly 
nonlinear ozone, sulfate, nitric acid, and hydrogen peroxide concentrations under various 
atmospheric conditions. For aerosols in the atmosphere, we used the Modal Aerosol Dynamics 
Model for Europe with the Secondary Organic Aerosol Model (MADE/SORGAM) (Ackermann 
et al., 1998; Schell et al., 2001). MADE/SORGAM accounts for the aerosol dynamics, including 
formation (i.e., condensation, nucleation, coagulation), transport, dry deposition, and aerosol-
cloud interaction. MADE/SORGAM further predicts the mass of several particulate-phase 
species, including sulfate, ammonium, nitrate, sea salt, dust, black carbon, organic carbon and 
secondary organic aerosols in the three log-normal aerosol modes: Aitken, accumulation, and 
coarse. Photochemistry in the atmosphere was simulated by photolysis of key species. Photolysis 
rates were obtained from the Fast-J photolysis scheme (Wild, Zhu, & Prather, 2000) which was 
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strongly affected by clouds and aerosols. All meteorological fields and chemical mechanisms 
stayed the same for both years (2015 and 2030). 

2.2.3 Emission inputs 
The ship emissions inventory was described in the previous section. For land-based emissions 
within China in 2015, we used the Multi-resolution Emission Inventory of China (MEIC).9 For 
2015 emissions in the part of Domain 1 that are outside of China, we used the Regional Emission 
Inventory in ASia version 2 (REAS) (Kurokawa et al., 2013). Both MEIC and REAS inventories 
provide emissions of major primary and secondary air pollutant precursors, including NOx, SO2, 
volatile organic chemicals (VOCs), ammonia (NH3), CO, and PM. PM in both inventories is 
classified by OC, BC, PM2.5 and PM10. For 2030, we chose the 2030-With Additional Measures 
anthropogenic emissions projection produced by Cai et al. (2018), which is based on a 2013 
emission inventory by Ma et al. (2017). For 2030 emissions in Domain 1 outside of China, we 
used the Representative Concentration Pathway 8.5 emission inventory for the rest of the East 
Asia region from Riahi et al. (2011). The WRF-Chem model used the Model of Emissions of 
Gases and Aerosols from Nature version 2.1 (Guenther et al., 2012) for biogenic emissions based 
on the weather and land-use data. WRF-Chem calculated the dust and sea salt emissions online 
by using the dust transport model (Shaw et al., 2008) and sea salt schemes (Gong, 2003). Aircraft 
emissions of BC, CO, OC, PM2.5, NOx, and SO2 were added from the Task Force Hemispheric 
Transport of Air Pollution emissions inventory (Janssens-Maenhout et al., 2015). 
 

2.2.4 Air quality model performance evaluation 
The model was evaluated by comparing modeled pollution concentrations in 2015 with observed 
concentrations from monitoring stations. Performance was determined by statistical metrics 
including the correlation coefficient (r), the normalized mean bias (NMB), the normalized mean 
error (NME), the mean fractional bias (MFB), the mean fractional error (MFE), and the root 
mean square error (RMSE) between the observed measures and modeled outputs (Chang & 
Hanna, 2004). Table 8 summarizes the model performance related to meteorological parameters 
(Chen et al., 2019). 
 

Table 8. Summary statistics for the four meteorological variables modeled and observed in four 
cities of the PRD region 

Variable Site Normalized 
mean bias 
(%) 

Normalized 
mean error 
(%) 

Mean 
fractional 
bias (%) 

Mean 
fractional 
error (%) 

Correlation 
coefficient 

Root mean 
square error 

2-meter 
Temperature 

Guangzhou 0.3 0.3 0.1 0.1 0.9 1.2 
Shenzhen 0.2 0.3 0.1 0.1 0.8 1.1 
Zhaoqing -0.3 0.4 -0.1 0.1 0.7 1.6 
Hong Kong 0.0 0.2 0.0 0.1 0.8 0.9 

10-meter 
Wind Speed 

Guangzhou -15.0 17.6 -4.4 5.1 0.9 0.6 
Shenzhen -36.4 36.4 -11.2 11.2 0.8 2.0 

                                                
9 More detailed information on MEIC can be found at http://www.meicmodel.org  
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Zhaoqing 31.6 39.9 5.9 8.0 0.5 1.0 
Hong Kong -35.9 35.9 -11.0 11.0 0.8 1.9 

10-meter 
Wind 

Direction 

Guangzhou -9.8 21.0 -2.7 5.6 0.5 45.7 
Shenzhen -0.8 11.9 -0.7 3.2 0.8 30.7 
Zhaoqing -5.9 21.1 -0.8 5.6 0.5 47.3 
Hong Kong 11.2 17.8 2.2 4.1 0.6 46.4 

Surface  
Relative 
Humidity 

Guangzhou -15.9 16.4 -4.7 4.9 0.5 17.0 
Shenzhen -12.3 15.1 -3.8 4.5 0.6 15.9 
Zhaoqing -1.6 9.1 -0.6 2.4 0.5 10.1 
Hong Kong -2.6 11.2 -1.1 3.1 0.7 11.2 

 
The model slightly underestimated the relative humidity in all four selected sites, as well as the 
wind speed in Guangzhou, Shenzhen, and Hong Kong. The model, however, overestimated the 
wind speed at Zhaoqing, with a correlation of 0.5 and NMB of 32%. Figure 2 shows the 
comparison between observed and modeled wind. The length of each wedge shows the number 
of hours that were observed or modeled within that direction (i.e., the direction from which the 
wind comes). The pattern shows that southerly wind was the most dominant, indicating that wind 
most often blew from the ocean to the land.  

 
Figure 2. Modeled versus observed wind speed and wind direction. 

We evaluated the model performance of PM2.5 based on the standards developed by Boylan and 
Russell (2006), which set the performance goals for PM2.5 at MFB less than or equal to ±30% 
and MFE less than or equal to 50%. The performance criteria for PM2.5 were set at MFB less than 
or equal to ±60% and MFE less than or equal to 75%. For ozone (O3), both MFB and MFE were 
set at less than or equal to ±15% and 35%, as recommended by Morris et al. (2007).  
 
Figure 3 and Table 9 summarize the modeled versus observed daily mean PM2.5 and O3 
concentrations. As shown in the graphs, the model somewhat overestimated PM2.5 concentrations 
in some cities, including Guangzhou and Shenzhen. This might be due to underestimated wind 
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speed and precipitation. As previously mentioned, we found that the modeled wind speed is less 
than the observed wind speed, which could predict more stagnant air in some cities (see Figure 
2). Nevertheless, the PM2.5 model performance for all cities still met the goal of MFB ≤ ±30% 
and MFE ≤ ±50%; the model performance of O3 concentrations also met the goals of MFB ≤ 
±15% and MFE ≤ ±35%.  

 
Figure 3. Modeled versus observed daily mean PM2.5 and O3 concentrations in nine GPRD 
cities. 

Table 9. Summary statistics for two pollutant concentrations for the model evaluation 

 
City Normalized 

mean bias 
(%) 

Normalized 
mean error 
(%) 

Mean 
fractional 
bias (%) 

Mean 
fractional 
error (%) 

Correlation 
coefficient 

Root mean 
square error 

PM2.5 

Guangzhou 193.3 197.4 20.3 21.5 0.5 81.6 
Shenzhen 245.3 245.3 24.3 24.3 0.3 62.6 
Zhuhai 86.6 98.4 10.1 14.5 0.6 26.8 
Foshan 53.6 71.8 7.9 12.4 0.5 36.2 
Zhongshan 195.2 195.3 20.8 20.8 0.4 58.2 
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Jiangmen 209.1 211.8 18.7 19.5 0.4 54.1 
Dongguan 188.2 188.2 22.3 22.3 0.5 59.7 
Huizhou 199.5 199.9 24.5 24.6 0.5 49.1 
Zhaoqing 27.2 41.9 4.5 8.5 0.3 18.3 

O3 

Guangzhou -29.7 40.1 -6.2 10.5 0.5 69.1 
Shenzhen -5.1 26.6 -0.3 6.1 0.5 37.2 
Zhuhai -18.6 26.5 -2.9 5.7 0.8 43.4 
Foshan -27.8 33.1 -7.0 8.6 0.7 53.1 
Zhongshan -3.8 31.1 1.8 7.7 0.8 34.3 
Jiangmen 1.5 23.9 2.4 6.4 0.8 26.1 
Dongguan -39.1 40.5 -10.8 11.5 0.7 73.3 
Huizhou -3.2 19.8 0.0 5.1 0.8 23.2 
Zhaoqing -26.8 30.5 -7.0 8.1 0.7 43.5 

 

2.3 Health impact analysis 

2.3.1 Mortality 
We estimated the health impacts due to ship-caused PM2.5 and O3 increases for both acute (short-
term) and chronic (long-term) mortality. For acute mortality, we calculated the total number of 
deaths from cardiovascular disease (CVD), and respiratory (RESP) mortality for both PM2.5 and 
O3. For chronic mortality, we calculated premature mortalities from ischemic heart disease 
(IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC), cerebrovascular 
disease (CEV), and RESP. The details of the health impact analysis are consistent with Chen., 
Saikawa., Comber., Mao., and Rutherford. (2019, in press). 
 
Premature mortalities related to ship emissions were estimated by Equation 8 that links changes 
in air pollution concentrations to health endpoints: 
 
 ∆𝑦 = 𝑦1 ∗ 𝑃𝑜𝑝 ∗ �1 −

6
Q�∗(�e��c)

� (8) 
Where:  
𝛽 = model parameterized slope of the log-linear relationship between concentration and 

mortality  
∆𝑦 = change in premature mortality incidences 
𝑦1 = baseline incidence rate of a given health endpoint 
𝑃𝑜𝑝 = population 
𝐶6 − 𝐶1 = change in air pollution concentration, in µg/m3 

 
We found the upper and lower limits of mortality (95% of confidence interval) based on the 
upper and lower limits of β, which depends on the relative risk (RRs) of each health endpoint. 
 
 𝛽 = ��	(��)

∆�
  (9) 

Where: 
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𝑅𝑅 = relative risk, defined as the ratio of death incidence caused by the change of 
pollution exposure to death incidence among the nonexposed population 

∆𝑐 = unit increase in air pollutant concentrations (10 µg/m3or 10 ppb) 
 
The RR is the ratio of the incidence of death among those exposed to the extra pollution (PM2.5 
or O3 in this study) to that of the nonexposed population. We retrieved the acute RRs from two 
PRD-specific time series studies, Lin et al. (2016) and Tao et al. (2012), to estimate mortality for 
both PM2.5 and O3 exposure. These RRs only apply to six cities in the Pearl River Delta (PRD). 
They are Guangzhou, Shenzhen, Dongguan, Foshan, Jiangmen, and Zhuhai and thus, for the 
health impacts related to acute exposures for this study, we provided mortality estimates for only 
those six cities. Still, these cities account for nearly half of the population in the GPRD region, 
and that means our estimates should capture the largest health impacts.   
 
We obtained the baseline incidence of short-term all-cause, CVD, and respiratory diseases for 
the six main cities in the PRD from the Guangdong Provincial Center for Disease Control and 
Prevention (Lin et al., 2016). Due to a lack of city-specific baseline incidence rates for chronic 
diseases, we applied the provincial baseline incidence rates in 2015 (personal communication 
with Health Effects Institute, October 2018) to all cities in Guangdong Province, and applied the 
standalone rates for Hong Kong only because of its special cultural and governmental settings 
from mainland China. For 2030 scenarios, only chronic mortality was predicted due to the lack 
of baseline incidence data. These values are summarized in Table 10. 
 
Table 10. Baseline incidence rates per 1,000 people in the Pearl River Delta region. 

 2015 Base Incidence 
Rate for Guangdong 
(per 1,000 people) 

2030 Base Incidence 
Rate for Guangdong 
(per 1,000 people) 

2015 Base Incidence 
Rate for Hong Kong 
(per 1,000 people) 

2030 Base Incidence 
Rate for Hong Kong 
(per 1,000 people) 

All Cause 6.5 8.5 8.9 11.6 
CVD 2.8 3.7 2.8 3.7 
CEV 1 1.3 0.6 0.8 
IHD 1.3 1.7 0.6 0.8 
COPD 0.6 0.8 1.2 1.6 
RESP 0.1 0.1 0.8 1 
LC 0.4 0.5 0.8 1 
Hospital 
Admission 

154 201 154 201 

Outpatient Visits 5,616 7,329 5,616 7,329 
  
For chronic mortality due to PM2.5 exposures, the RRs can vary with different PM2.5 
concentrations. Thus, we adopted the long-term Integrated Exposure Response (IER) function to 
find the RRs under different PM2.5 concentrations. This is the most recognized method to 
estimate chronic PM2.5-related mortality. The IER function for each health endpoint was 
developed by Burnett et al. (2014). These values are widely used to estimate the global burden of 
disease attributable to PM2.5 exposure around the world. The IER model is written as: 
 

 𝑅𝑅(𝑧) = �
1, 𝑧 < 𝑧�`

1 + 𝛼 �1 − 𝑒���∗(�����)��� , 𝑧 ≥ 𝑧�`
 (10) 
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Where: 
𝛼, 𝛾, 𝛿 = model parameters for each health endpoint, determined by fitting a curve to RR data 

taken from studies on ambient air pollution, secondhand tobacco smoke, household 
solid cooking fuel, and active smoking 

𝑅𝑅(𝑧) = relative risk at the z exposure level 
𝑧 = PM2.5 concentration, in µg/m3 
𝑧�` = counterfactual concentration below which no additional risk is assumed 

 
Because there are few cohort studies that were performed in China, and none of them was further 
validated, the IER functions are currently regarded as the best estimate of the long-term 
mortality. The IER functions are developed for causes of mortality including IHD, CEV, COPD, 
and LC. 
 
Due to the lack of studies for the chronic mortality due to O3 exposure, we simply adopted RRs 
from a cohort study by Jerrett et al. (2009) for CVD, RESP, and IHD. Unlike RRs developed by 
the IER model, a single set of RRs was used for O3. This was consistent for all O3 concentrations 
and age groups and, therefore, higher uncertainty might remain in the O3 chronic mortality 
estimation than in the PM2.5 chronic mortality estimation. 
 

 𝑅𝑅 = 𝑒¢∗(�����) (11) 
Where: 
𝛽 = model parameterized slope of the log-linear relationship between concentration and 

mortality  
𝑅𝑅 = relative risk of ground-level ozone exposure  
𝑧 = average 8-hour daily maximum ground-level ozone concentration, in µg/m3 
𝑧�` = counterfactual concentration below which no additional risk is assumed 

 
Table 11 summarizes the above RRs associated with a 10 μg/m3 change in particulate matter or 
10 ppb change in O3 that are used for this analysis. 
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Table 11. Relative risks of premature mortality 

Outcome and exposure metric Relative Risks (95% 
CI) Reference 

All cause (natural) mortality and short-term exposure to 
PM2.5 

1.0176 (1.0147, 
1.0206) Lin et al., 2016 

Cardiovascular mortality and short-term exposure to PM2.5 1.0219 (1.0180, 
1.0259) Lin et al., 2016 

Respiratory mortality and short-term exposure to PM2.5 1.0168 (1.010, 
1.0237) Lin et al., 2016 

All cause (natural) mortality and short-term exposure to O3 1.0081 (1.0063, 
1.010) Tao et al., 2012 

Cardiovascular mortality and short-term exposure to O3 1.0101 (1.0071, 
1.0132) Tao et al., 2012 

Respiratory mortality and short-term exposure to O3 1.0133 (1.0089, 
1.0176) Tao et al., 2012 

   

Ischemic heart disease and long-term exposure to PM2.5 

IER Burnett et al. 
(2014) 

Chronic obstructive pulmonary disease and long-term 
exposure to PM2.5 
Cerebrovascular disease and long-term exposure to PM2.5 
Lung cancer and long-term exposure to PM2.5 

Ischemic heart disease and long-term exposure to O3 1.015 (1.003, 1.026) Jerrett et al., 
2009 

Respiratory mortality and long-term exposure to O3 1.029 (1.010, 1.048) Jerrett et al., 
2009 

Cardiovascular mortality and long-term exposure to O3 1.011 (1.003, 1.023) Jerrett et al., 
2009 

 
The baseline incidence rate (𝑦1) for each health endpoint in Guangdong Province and Hong 
Kong was retrieved from the provincial baseline incidence rate in 2015 (personal communication 
with Health Effects Institute, October 2018). Separately, we projected the 2030 base incidence 
rate by considering increases in crude death rates from 2015 to 2030 in China according to the 
UN Department of Economic and Social Affairs (n.d.). The gridded population data from 2015 
were retrieved from the National Aeronautics and Space Administration’s Socioeconomic Data 
and Applications Center’s fourth version of its Gridded Population of the World (Center for 
International Earth Science Information Network, 2016) and were projected to 2030 gridded 
population based on a methodology developed by the UN Department of Economic and Social 
Affairs (United Nations, Department of Economic and Social Affairs, Population Division, 
2017). The city-level population for both years and the total death incidences are in Table 12. 
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Table 12. 2015 and 2030 projected population and all-cause baseline mortality for cities in the 
GPRD region 

City 2015 Population 2030 Projected 
Population 

2015 Mortality 
(All cause) 

2030 Projected 
Mortality 
(All cause) 

Guangzhou 19,718,753 20,341,965 131,819 172,018 

Shenzhen 15,456,921 15,945,437 103,329 134,840 

Dongguan 12,235,261 12,621,956 81,792 106,735 

Foshan 11,084,311 11,434,631 74,098 96,695 

Hong Kong 9,506,476 9,806,929 87,291 113,911 
Huizhou 7,520,142 7,757,816 50,272 65,603 
Jiangmen 6,487,500 6,692,537 43,369 56,594 
Zhaoqing 5,657,705 5,836,517 37,822 49,355 

Zhongshan 4,604,145 4,749,659 30,779 40,165 

Zhuhai 2,699,468 2,784,785 18,046 23,549 

Macao 600,942 619,935 —a —a 

GPRD 95,571,624 97,972,232 658,617 859,465 
 [a] No estimate because too small to model with precision at Domain 3 scale. 

2.3.2 Morbidity 
We used the same function, Equation 8, to estimate the ECA-reduced morbidity for hospital 
admissions and outpatient visits. We first found the PM10 concentration difference between 2030 
BAU and 2030 ECA-control scenario, then estimated the ECA’s health benefits from reduced 
morbidity.10 
 
Total hospital admissions and outpatient visits for China were retrieved from Fu et al. (2018), 
which summarized physician workloads in China from 1998 to 2016. In 2015, there were 7.7 
billion hospital visits, resulting in approximately 210 million inpatient admissions. We estimated 
the base incidence rate by dividing those patient numbers by the overall population in 2015. We 
projected the 2030 base incidence rate by increasing them by the same rates as the ones for 
mortality—1.333 for mainland China and 1.284 for Hong Kong. 
 
The relative risks of both hospital admissions and outpatient visits for all ages were obtained 
from Cao et al. (2009) and Chen et al. (2010), respectively, which used the generalized linear 
Poisson models to generate the excess percentage risk for a 10 μg/m3 increase of PM10 
concentrations. The β coefficients were obtained from Equation 9, and the C1 and C0 used were 
modeled PM10 concentrations from 2030 BAU and 2030 ECA scenarios, respectively. RRs for 
both premature mortality and morbidity associated with a 10 μg/m3 change in PM10 for studied 
health endpoints and their references can be found in Table 13. 

                                                
10 We used PM10 because our cited baseline incidence rate for morbidity was associated with PM10 concentrations 
(Cao et al., 2009). We did not estimate ECA-reduced morbidity related to O3 emissions because no widely 
acceptable research has yet identified RRs that link O3 emissions to hospital admissions or outpatient visits in the 
GPRD region. 
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Table 13. Relative risks of morbidity  

Outcome and exposure metric Relative Risks (95% CI) Reference 
Total outpatient visits and exposure to PM10 1.0011 (0.9997, 1.0026) Cao et al., 2009 
Total hospital admission and exposure to PM10 1.0018 (0.9985, 1.0052) Chen et al., 2010 

2.3.3 Health benefits monetization 
We calculated the economic value of reduced mortality by applying the value of statistical life 
(VSL) method and quantified the economic benefits of reduced morbidity by applying the cost of 
illness (COI) method. The VSL is the estimated economic value of an average life, and the COI 
estimates both the costs of pharmaceuticals and hospitalization and the loss of income during 
sick leave due to illness. Lu, Yao, Fung, and Lin (2016) provided the VSLs and COIs for China 
from 2010 to 2013 based on the Consumer Price Index (CPI) in each year. We then projected to 
the 2015 level by linear interpolation and assumed that the VSL and CPI differences between 
2030 and 2015 are negligible. The VSL used in this study is $1.15 million USD and the COIs for 
outpatient visit and hospital admission are $32.10 and $1,447.70, respectively. Because VSL is 
likely to grow over time as per capita income increases, our 2030 estimate for the monetized 
health benefits of a Chinese ECA could be considered conservative. 

2.4 Cost analysis  
To evaluate the cost effectiveness of a Chinese ECA in reducing SOx, PM10 and NOx emissions, 
we estimated the cost for ships to comply with a 200-nm ECA in 2030. The cost effectiveness of 
an ECA in 2030 is expressed as dollars per tonne of reduced emissions. The following 
assumptions for control measures were analyzed: 

❏ All ships switched to MGO to comply with an ECA fuel sulfur limit of 1,000 ppm11 
❏ All 4-stroke main engines built after 2025 are equipped with SCR to comply with Tier III 

NOx regulations 
❏ All 4-stroke auxiliary engines built after 2025 are equipped with SCR regardless of the 

technology applied to the main engine to comply with Tier III NOx regulations 
❏ All 2-stroke main engines built after 2025 are equipped with EGR to comply with Tier III 

NOx regulations 
 
The selection of technology was based on the availability and readiness of technology, as well as 
on analytical conclusions from previous ECA applications. In addition to cost-effectiveness, we 
calculated a cost-benefit ratio of an ECA policy for the GPRD region, which we compared 
against other land-based control measures. The total cost of ECA compliance should vary by 
region, as different ECAs cover different amounts of ship traffic. In this study, the total cost of 
ECA compliance for the GPRD region is a product of the cost-effectiveness per pollutant 

                                                
11 We did not consider scrubbers as a compliance option to meet the fuel sulfur requirement since China is planning 
to ban waste water discharge from open-loop scrubbers in its territorial waters (MSA, 2018). This will serve to 
discourage the use of scrubbers to comply with a future Chinese ECA. The official regulation can be found at 
http://www.xindemarinenews.com/uploads/soft/190105/285-1Z1051A610.pdf.  
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($/tonne) and the amount of ship emissions (tonnes) mitigated in a predefined region (see Section 
3.4.2 in the main document for details). 

2.4.1 Fuel-switching 
The estimation of fuel-switching cost is straightforward (see Equation 12). Fuel consumption 
within the ECA in 2030 was estimated using the emissions projection model described in the 
previous section. The baseline 2030 fuel was assumed to be low-sulfur HFO (LSHFO), whereas 
the ECA-compliant fuel type is MGO (distillate fuel). Differences in the energy density of these 
fuels was corrected for by using assumptions outlined in Comer (2019). 
 

 𝐶 aQ?	¤~.A�¥.CZ = 𝐹𝐶P.¤A.??SAQ	`aQ? ∗ 𝑃P.¤A.??SAQ	`aQ? − 𝐹𝐶Z?}¦S?	`aQ? ∗ 𝑃Z?}¦S?	`aQ? (12) 
Where: 
𝐶 aQ?	¤~.A�¥.CZ = cost of fuel switching  
𝐹𝐶P.¤A.??SAQ	`aQ?  = distillate fuel consumption within ECA, in tonnes 
𝑃P.¤A.??SAQ	`aQ? = distillate fuel price, in $/tonne 
𝐹𝐶Z?}¦S?	`aQ? = global marine fuel consumption within ECA, in tonnes 
𝑃Z?}¦S?	`aQ? = global marine fuel price, in $/tonne 

 
The cost of fuel-switching is the price differential between ECA-compliant fuel (MGO) and 
global marine fuel (LSHFO). Mao and Rutherford (2018) used the World Bank’s periodic 
projection of crude oil prices to estimate the 2025 prices for MGO and LSHFO for three generic 
(high, medium, and low) scenarios. We assumed that MGO and LSHFO prices track closely with 
that of the crude oil. Following the same methodology, we estimated the 2030 price for MGO 
and LSHFO (see Table 14). The price differential of the medium scenario (bold values) was used 
in the main analysis and those of the high and low scenarios were used for a sensitivity analysis. 
Additional details are provided in the Appendix to the main document. 
 
Table 14. Fuel price estimates for 2030 

Fuel type 2015 (2012 
$ per tonne) 

2020 (2012 
$ per tonne) 

2030 (2012 $ per tonne) 
High Medium Low 

Crude oil 382 454 1212 461 312 
MGO 654 554 1481 563 381 
LSHFO High differential 

- - 

1185 451 305 
Medium 
differential 1303 496 335 
Low differential 1422 541 366 

 

2.4.2 Tier III NOx control measures 
In the North American ECA application, SCR was the only technology analyzed to comply with 
ECA NOx regulations. In this study, we adopted the methodology detailed in a Danish Economic 
Impact Assessment study (Incentive Partners & Litehauz, 2012) (hereafter “the EIA study”) that 
considered both SCR and EGR as compliance options. That recent study also was used to 
support the North Sea ECA application, and it likely better reflects recent technological 
developments and other developments that impact the economic viability of these technologies. 
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At the core of the EIA study was a cost function to estimate the capital and operational costs of 
SCR and EGR technologies on both 2-stroke and 4-stroke engines (see Table 12, adapted from 
Table 4-3 of the EIA study).  
 
Table 15. NOx control costs  

Cost component EGR (2-stroke) SCR (4stroke) 
Capital expenditure Y; 2012 $/kW  
(X = installed engine power, in MW) 

-0.23X + 53.6 
 

0.03X2 - 2.07X + 65.1 
 

Operational expenditure; 2012 
$/MWh  

2.85 (2.3-3.4) 8 (3.1–8.2) 

SFOC; g/kWh  0.6 1.5 (1–2) 
Note: When there is a range of values, the applied value reflects the arithmetic mean. 

 
Capital cost (CAPEX) was calculated based on survey information from key manufacturers and 
expressed as a function of the engine’s installed power. The range of CAPEX reflects the lower 
and upper limits of installed engine power used by the manufacturers surveyed. These ranges 
also were used in the sensitivity analysis, which is in the Appendix of the main report. 
Operational cost (OPEX) is directly related to the use of the technology. For SCR, this is mainly 
the cost of urea as a reagent to convert NOx into nitrogen and water. For EGR, this is mainly the 
cost of running an internal scrubber with NaOH neutralization on the routed exhaust gas before 
mixing it with the incoming combustion air. Running the EGR system usually means a slight 
SFOC penalty because the process reduces combustion temperature and thus efficiency. The 
SFOC increase associated with SCR is due to the energy used to run the SCR reactor and the 
monitoring/control system, and its use for urea injection/dosing.  
 
To capture the cost of Tier III NOx control technology in 2030, the CAPEX must be amortized. 
We used the following equation to calculate the annualized CAPEX: 
 

 𝐸𝐴𝐶 = 𝐶.C.A.S? ∗
Y

6�(6§Y)�¨
 (13) 

Where: 
𝐸𝐴𝐶 = equivalent annual cost, in $/year  
𝐶.C.A.S?  = initial capital investment, in $ 
𝑟 = discount rate, or cost of investment 
𝑝 = number of years for discounting, in this case, a ship’s useful life 

 
Equation 14 was used to calculate costs by ship class and capacity bin, with the following inputs 
and assumptions: 

❏ Only ships built after 2025 will incur cost for NOx Tier III control measures 
❏ Ships that travel in non-China ECAs (e.g., the North American ECA, the North Sea ECA) 

split CAPEX among each ECA in proportion to the travel time within each. The split 
ratio can be found in Table 16 

❏ The EIA study provided a range of OPEX values that are used in a sensitivity analysis 
detailed in the Appendix to the main document. The OPEX number used in this analysis 
was the suggested value used by the EIA study. These values are summarized in Table 
15. 
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❏ CAPEX is expressed as an annuity in Equation 13. The discount rate was assumed to be 
4%, as used in the EIA study. The period of discounting was assumed to be 25 years, the 
assumed useful life of a ship in this study. 

 

 𝐶I.QY	©©©,<,? = 𝐸𝐴𝐶<,? ∗ 𝑅_𝐸𝐶𝐴<,? + 𝑂𝑃𝐸𝑋<,?  (14) 
Where: 
𝑙 = ship capacity bin l  
𝐶I.QY	©©©,<,?  = cost of Tier III NOx compliance for ship class k and capacity bin l, in $ 
𝐸𝐴𝐶<,? = equivalent annual capital cost of Tier III NOx compliance for ship class k and 

capacity bin l, in $ 
𝑅_𝐸𝐶𝐴<,? = ratio to split cost between the ECA under analysis and the rest of the ECAs 
𝑂𝑃𝐸𝑋<,? = operational cost of Tier III NOx compliance for ship class k and capacity bin l, in $ 

 
We allocated Tier III NOx capital costs among the Chinese ECA and other ECAs based on the 
anticipated time a ship would spend in the Chinese ECA versus other ECAs around the world. 
We estimated a time ratio spent in existing versus a potential 200-nm Chinese ECA across 
different ship classes by sampling the 2015 OGV fleet. The ratios generated, shown in Table 16, 
range from 0.15 to 1.00; that is, for every 100 hours spent in all ECAs around the world, 
including the potential 200-nm Chinese ECA, ships would spend between 15 and 100 hours 
within the Chinese ECA.12 If more ECAs are in place in 2030, then this ratio could be even 
lower, meaning less cost to China.  
 

Table 16. China ECA ratio by ship class and capacity bin 

Ship class Capacity bin Time ratio in China ECA 

Container ship 

1 1.00 
2 1.00 
3 1.00 
4 1.00 
5 1.00 
6 0.72 
7 1.00 
8 0.72 

Bulk carrier 

1 1.00 
2 1.00 
3 0.38 
4 0.39 
5 0.48 
6 1.00 

General cargo ship 
1 1.00 
2 1.00 
3 1.00 

Chemical tanker 

1 1.00 
2 1.00 
3 1.00 
4 0.15 

Oil tanker 1 1.00 

                                                
12 Ships that never appeared in the potential Chinese ECA in 2015 were excluded from sampling. 
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2 1.00 
3 1.00 
4 1.00 
5 0.08 
6 1.00 
7 1.00 
8 0.88 

Liquified gas 
tanker 

1 1.00 
2 0.69 
3 1.00 

Cruise ship 

2 1.00 
3 0.32 
4 0.68 
5 1.00 

Roll-on/roll-off 1 1.00 
2 0.84 

Refrigerated bulk 1 1.00 
Vehicle 1 0.81 
Tug boat 1 1.00 

Fishing boat 1 1.00 
 

The cost-effectiveness of the ECA in reducing NOx emissions was then calculated by dividing 
the total cost by the total amount of emissions abated in the entire 200-nm national ECA. 
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