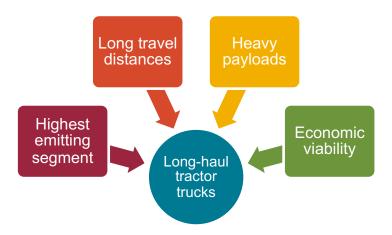
Long-haul battery-electric trucks in Europe

Hussein Basma, Ph.D. Felipe Rodríguez, Ph.D.

07.February.2022 Berlin, Germany



Decarbonizing long-haul trucks: importance and challenges

- Tractor-trailers are responsible for over half of the CO₂ emissions from road freight transport.
- Tractor-trailers long travel distances and heavier loads make them the hardest truck segment to decarbonize.
- Uncertainties around the total cost of operation of such tractor trailers, impacting their large-scale deployment.

Most challenging and most important segment

to **DECARBONIZE**

Outline

- Technology analysis
- Economic analysis (Total cost of ownership)

Battery electric long-haul tractor trailers in Europe: A vehicle technology analysis

Scope and objectives

WORKING PAPER 2021-29

© 2021 INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

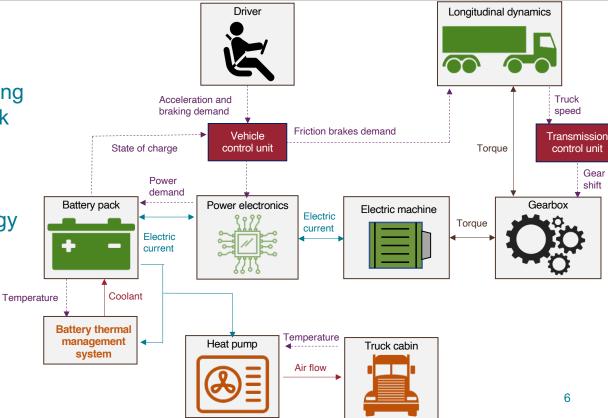
AUGUST 2021

- 1) Estimate the truck energy efficiency and battery sizing needs.
- 2) Quantify the payload capacity of batteryelectric trucks.

Dicct THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

Battery electric tractor-trailers in the European Union: A vehicle technology analysis

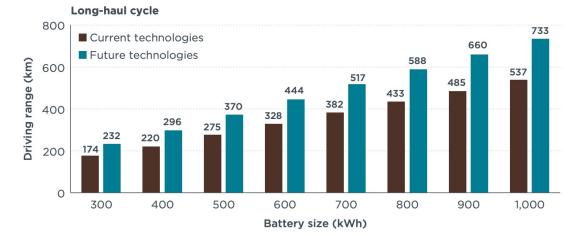
Authors: Hussein Basma, Yannis Beys, Felipe Rodríguez. Keywords: Battery-electric tractor-trailers, energy consumption, driving range, temperature impact, payload penalty


Introduction

There is a broad consensus on the need to achieve global net-zero CO₂ emissions by 2050 in order to limit the global mean temperature increase to 1.5°C. To achieve this, the European Union (EU) is taking active steps to make these targets legally binding by enshrining them into a European Climate Law (European Commission, 2020), which would create the legal framework to adopt stringent measures to meet the target across sectors.

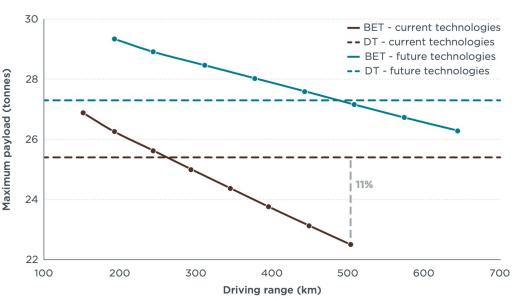
Transport, which represents approximately a quarter of Europe's greenhouse gas emissions, has not seen the same gradual decline in emissions as other sectors have in the past (Delgado & Rodríguez, 2018). In particular, the greenhouse gas emissions of road freight transport went unaddressed for decades. It was not until 2019 that the first CO_2 emission standards for new heavy-duty vehicles (HDV) were adopted in the EU. To set the ambition of the standards, the European Commission studied the potential of

Methods


- Comprehensive vehicle modelling and simulation over typical truck use cases in the EU.
- Powertrain energy needs, and cabin and battery thermal energy needs.

Energy needs and driving range

- 1,000 kWh battery energy capacity is needed to cover a 500 km driving range (90% of truck applications in Europe with 45 mins opportunity charging at 350 kW)
- Improvements in battery energy density and road-load technologies will enable substantially smaller batteries
 - ~ 700 kWh to achieve a 500 km driving range


Driving range estimation for current and future technologies over the long-haul drive cycle using the reference payload.

Payload capacity

- The maximum payload of the battery-electric tractor-trailer is estimated with a gross vehicle weight of 42 tonnes instead of 40 tonnes
- Reduction in electric truck payload capacity with the increase in its driving range
- At a 500 km driving range, payload capacity penalty is 11%.
- With chassis light-weighting and battery energy density increase (0.14 kWh/kg in 2020 to 0.23 kWh/kg in 2030), electric trucks would not result in any payload penalty.

Maximum tractor-trailer payload as function of driving range.

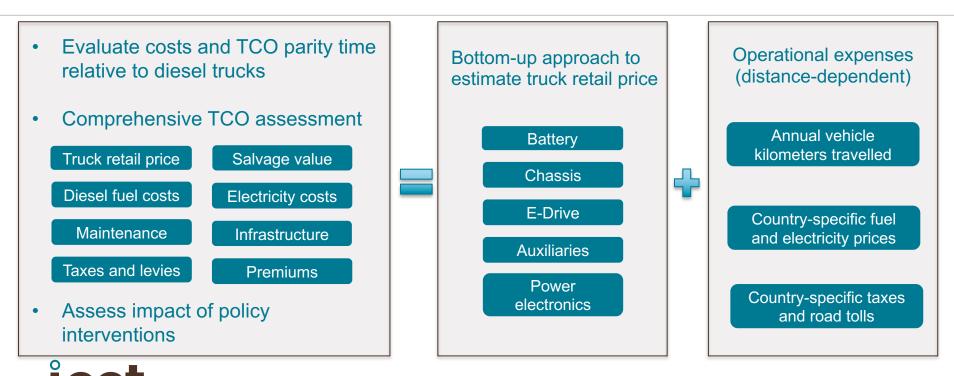
Total cost of ownership of long-haul tractor trailers in Europe: Battery electric VS diesel

Scope and objectives

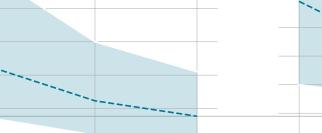
 Quantify and compare the TCO of electric and diesel long-haul tractor trailers in 7 European countries. WHITE PAPER

NOVEMBER 2021

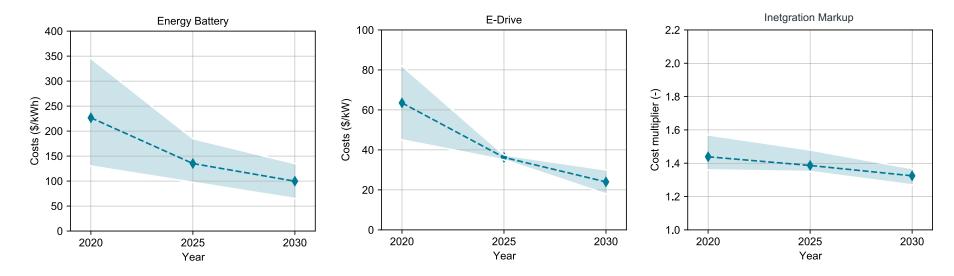
TOTAL COST OF OWNERSHIP FOR TRACTOR-TRAILERS IN EUROPE: BATTERY ELECTRIC VERSUS DIESEL


Hussein Basma, Arash Saboori, and Felipe Rodríguez

 Assess the impact of policy measures on the TCO parity year of electric and diesel trucks

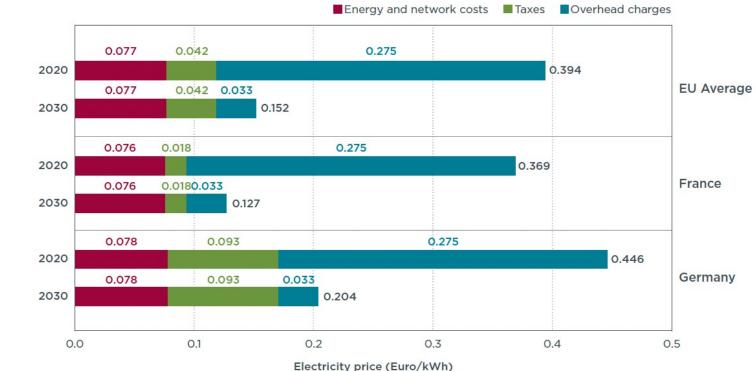


Methods


ON CLEAN TRANSPORTATIO

Methods

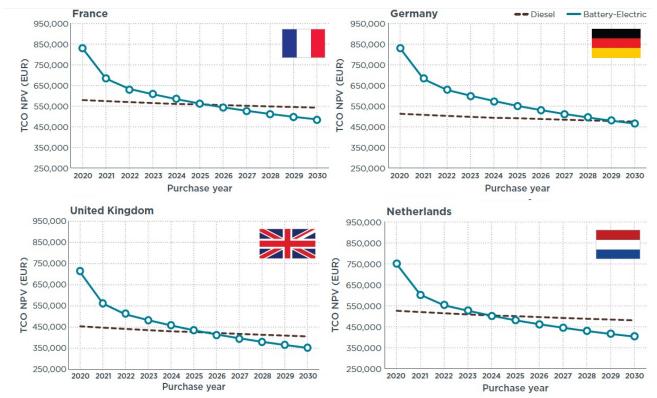
Component direct manufacturing costs forecast between 2020-2030


Source: ICCT desk research and Ricardo Strategic Consulting U.S.

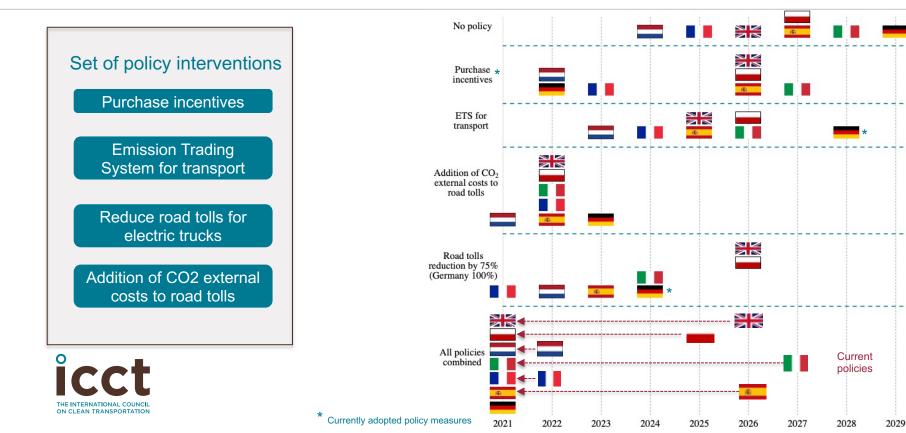
0

12

Electricity costs including overheads to account for infrastructure investment



Dicct


Results: fixed energy prices 2020-2030 (No Policies)

- Case of a long-haul tractor-trailer equipped with a battery large enough to cover 500 km on a single charge
- Battery-electric trucks can reach TCO parity with diesel trucks by the mid of the decade:
 - Higher energy efficiency
 - Lower energy costs (depends on diesel and electricity prices)
 - Lower maintenance costs

Results: impact of policy implications

2030

Results: current policy interventions

- Battery-electric trucks operating in Germany, France, and the Netherlands achieve TCO parity today under current policy interventions implemented in these countries.
- Germany offers generous purchase incentives reaching € 450,000 per truck. France offers € 50,000 per truck and the Netherlands covers 40% of price difference with diesel trucks.
- 100% road tolls waiver for electric trucks in Germany.
- National CO₂ prices implemented in Germany including transport.

Takeaways (1/2)

- The majority of truck applications in the EU can be covered by battery-electric trucks from a technology perspective:
 - \circ Today: ~ battery size of 1,000 kWh
 - By 2030: ~ battery size of 700 kWh due to energy efficiency and battery density improvement

- Battery electric tractor-trailer with 500 km driving range suffer a small payload penalty today, with the potential of having no payload penalty in the future:
 - Today: ~ 11% payload penalty
 - o By 2030: No payload penalty

Takeaways (2/2)

- From a first-user perspective, BETs can achieve TCO parity with diesel tractor-trailers during this decade without any additional policy support:
 - Electric trucks operating in Germany, France, and the Netherlands are already at TCO parity with diesel tractortrailers.
- Regulatory support can reduce the cost gap between battery-electric and diesel tractor trucks:
 - o Implement the Eurovignette directive into national law as expeditiously as possible
 - o Extend the European Emissions Trading Systems (ETS) to include transport
 - Purchase premiums for trucks should be limited to incentivize the purchase of zero-emission trucks in the near term and exclude all combustion-powered truck

Questions

Hussein Basma h.basma@theicct.org

Felipe Rodríguez f.rodriguez@theicct.org

