

TRUE – The Real Urban Emissions Initiative London 2017-2018

Fieldwork and methodology report

Company	Opus Remote Sensing Europe S.L. (Opus RSE)	
Client	International Council on Clean Transportation (ICCT)	
Date	10/07/2018	

Index

1	Executive summary	3
2	Methodology used in London	4
2.1	Phase 1 – Sampling plan	4
2.2	Phase 2 – Data collection	
2.3	Phase 3 – Data processing	14
Anr	nex I - Description of the technology	
Anr	nex II – The team of the project	21
Anr	nex III – Sampling plan calendar	23
Anr	nex IV – Description of the database	27

1 EXECUTIVE SUMMARY

The objective of this document is to report the fieldwork done by Opus RSE and Ricardo in London for the TRUE initiative (<u>https://www.trueinitiative.org/</u>), from November 6th 2017 to April 12th 2018.

The Remote Sensing Device (RSD) that was used in the project is the **Opus AccuScan™ RSD5000.** Project management and data analysis has been done by Opus RSE, who subcontracted Ricardo Energy and Environment, led by Dr. David Carslaw, to perform the roadside measurements.

The objective of the project has been successfully achieved (100 thousand valid records), as a database of 122,385 valid remote sensing measurements made with the RSD5000 has been delivered to the ICCT. Also, additional 41,959 measurements collected with the FEAT instrument have been provided. In this report, only data collected with the RSD5000 are considered.

Data analysis is reported in a separate document. This document only reports on the fieldwork and methodology used.

2 METHODOLOGY USED IN LONDON

The project has been completed in three phases:

- **Phase 1**: Sampling plan development and securement of permits and approvals
- Phase 2: Data collection
- **Phase 3**: Data processing and number plate matching

2.1 Phase 1 – Sampling plan

Prior to the field campaign, Opus RSE and Ricardo made a selection of potential sites in the urban area of London. The preliminary sites where chosen depending on their potential of providing good quality of data. Emissions are highly dependent on driving conditions (speed, acceleration, gradient of the road, time since the engine was started, traffic, etc.), so the selection of the sites was done very carefully, looking for different properties, while at the same time meeting certain conditions for the correct measurement of emissions.

The list was composed of 16 potential sites, which had the following characteristics:

- 1. Single lane roads, so that emissions of each vehicle can be measured without exhaust gases overlapping and therefore each record can be matched to a single vehicle without the problem of possible mixture of gases from the plumes.
- 2. Smooth traffic flow. Not too busy such that the road is frequently congested (measurements cannot be made in queuing traffic or jams) but where the RSD can measure thousands of vehicles per day.
- 3. Locations on a slight upward slope, and / or locations where vehicles are under acceleration e.g. on the exit from a roundabout. This type of locations maximizes the exhaust gas signal and data capture.
- 4. Some sort of street furniture in the middle e.g. a small traffic island, or a hatched area that can be coned off to protect the RSD equipment.
- 5. Preferably not close to residential areas where vehicles with cold engines may be measured.
- 6. Sites where there is a representative mix of different vehicle types.

The potential sites where reviewed with the ICCT and with the GLA (Greater London Authority), who assisted in the conversations with TFL (Transport for London) to obtain the permits.

From the list of potential sites, the RSD was finally deployed in 9 sites, which are shown in Table 2-1.

Site	Site Short	Latitude	Longitude	Slope	Number
ID	Name			(°)	of days
1	A10M25JUNC	51.682800	-0.051400	-0.1	7
2	DAWLEYHAYE	51.502102	-0.430602	-1.0	1*
3	EALING	51.519651	-0.354650	0.4	4
4	HESTONRD	51.489601	-0.371700	0.0	2
5	PUTHIL	51.455399	-0.219551	1.7	12
6	STOCKLEY R	51.513302	-0.450680	0.0	1*
7	TULSEHIL	51.441200	-0.112659	2.6	6
8	WESTENDHIL	51.568600	-0.422508	0.0	9
9	WOOLCIR	51.479698	0.060046	0.8	3
				Total:	45

Table 2-1	Sites of the	e proiect

* Some locations that seemed appropriate beforehand, were not good enough in practice. That is why, thanks to the ease of deployment of the RSD, the project was adapted as it progressed, to measure in more suitable locations.

The selected sites had different slopes, different traffic characteristics and some of them where very good locations in terms of valid measurements per hour. Figure 2-1 shows the nine locations in a map.

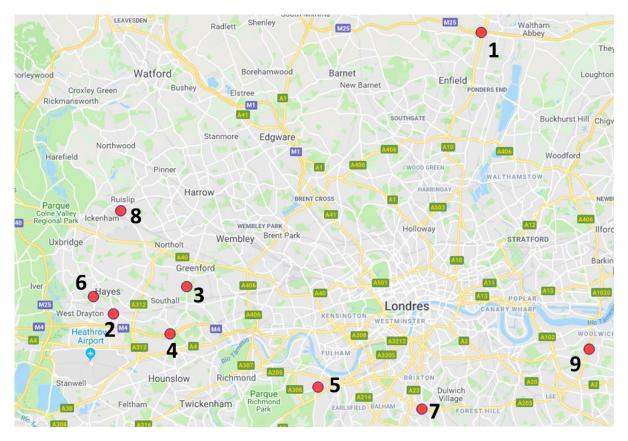


Figure 2-1 Map view of the sites

The specific days that have been measured at each of the sites is shown in Annex III.

Below is a description and a photograph of each location.

Site 1 – Juntion between A10 and M25:

Busy traffic flow with around 800 to 900 vehicles per hour. Site situated on a slightly decreasing gradient but acceleration of vehicles joining M25 counteracted this. Mixed fleet of vehicles including HDV's and passenger cars.

Figure 2-2 Site 1

<u>Site 2 – Dawley road near to Waltha avenue:</u>

Site situated after a roundabout on Dawley Road. The majority of vehicles were decelerating after the roundabout leading to slow moving traffic. Due to this, measurements were abandoned after the first day.

Figure 2-3 Site 2

<u>Site 3 – Ealing, Greenford road:</u>

Most vehicles were passenger cars with some HDV's and buses (site situated along bus route). Traffic became stationary intermittently and many cars are decelerating because of this.

Figure 2-4 Site 3

<u>Site 4 – Heston road under the M4:</u>

This site was used as a solution to measuring in the rain, situated under a bridge under the M4. Spray from vehicles still did inhibit measurements during prolonged episodes of precipitation, however as this got lighter and the road dried validity increased, obtaining ~700 vehicles per hour.

Figure 2-5 Site 4

<u>Site 5 – Putney Hill:</u>

Mostly passenger vehicles with some buses as the site is located on a bus route. The site is on a steady gradient leading to acceleration of vehicles and a high validity.

Figure 2-6 Site 5

<u>Site 6 – Stockley road coming from Stockley Park:</u>

The site was located on a slip road leading onto Stockley Road from Stockley Park. However, this led to low vehicle flows determined only by rush hour traffic exiting Stockley Park. Coupled with minimal acceleration and a flat gradient this lead to low validity, therefore measurements at this site were postponed.

Figure 2-7 Site 6

<u>Site 7 – Christchurch road heading north west:</u>

The site was situated on a positive gradient, however occasionally there was deceleration due to queuing vehicles further along the road and vehicles turning left at the next junction. There were predominantly passenger vehicles with some buses and HDV's.

Figure 2-8 Site 7

<u>Site 8 – West End road heading north:</u>

The site was located on West End Road heading towards Ruislip. The predominant vehicle type were passenger vehicles with some buses (as the site is located on a bus route). Acceleration was common as vehicles turned around a corner and then accelerated out of it.

Figure 2-9 Site 8

<u>Site 9 – A205 South Circular:</u>

The site was loated on the A205 South Circular in Woolwich. A relatively flat gradient in a 30MPH speed zone led to many vehicles deccelerating when driving past our camera. This led to a lower than expected validity. Most were passenger vehicles with some buses (again on a bus route) and a small percentage of HDV's.

Figure 2-10 Site 9

2.2 Phase 2 – Data collection

The fieldwork consisted of 41 days of measurements, capturing data for 8 hours per day, from November 6th 2017 to February 15th 2018 in a total of 41 days of measurements. The field campaign was led by Dr. David Carslaw, from Ricardo (see Annex II).

The RSD is always first calibrated prior to each data collection session, in a process that only takes a few minutes. During the course of the session, the RSD is audited each 45 minutes, to verify the system is performing within specifications and does not need re-alignment and/or re-calibration.

The calibration procedure involves a two-stage process of calibrating then auditing the system. Firstly, the SDM alignment signals need to be above 10,000 for both IR and UV (ideally maximized where possible), then a calibration can be started. Calibrations involve the use of a cell calibration which contain known values of calibration gas. The cell is placed in the IR beam path and the SDM is calibrated to known gas values. This process can only occur when there is a break in the traffic. Following this, audits are undertaken whereby gas bottles of

known quantities containing the measured pollutants are measured and referenced against the stated concentrations. This provides factors that can be applied to the data.

As data is collected, sophisticated Accuscan[™] exhaust plume validation software (developed and improved over two decades) reviews each measurement in real-time to ensure it is of adequate strength, that the exhaust plume decayed in a manner consistent with warm loaded-mode vehicle operations, and that the prevailing background levels are stable and can be accurately determined. Each session's dataset is compiled every day and put together into a large database later on.

Table 2-2 shows the number of data captured and the data with a corresponding license plate and technical data available.

Site	Site Short	Number	Number	Number of valid	Number of valid records
ID	Name	of	of valid	records with	with identified license
		records	records	identified	plate and technical data
				license plate	available
1	A10M25JUNC	31,391	23,296	20,559	19,810
2	DAWLEYHAYE	1,695	1,151	1,067	1,018
3	EALING	12,178	9,199	8,904	8,149
4	HESTONRD	1,999	1,431	1,380	1,319
5	PUTHIL	46,929	40,818	38,398	38,356
6	STOCKLEY R	1,166	1,021	975	928
7	TULSEHIL	18,893	16,182	15,440	14,790
8	WESTENDHIL	28,956	23,475	22,801	21,943
9	WOOLCIR	6,608	5,813	5,479	5,157
		149,815	122,385	111,553	111,470

Table 2-2 Number of valid and matched records per site

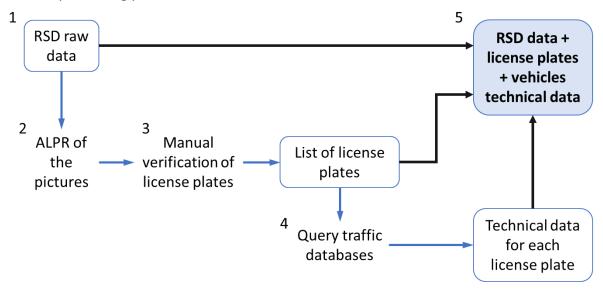
Table 2-3 shows the number of measurements obtained per site and the valid records per hour.

Site	Site Short	Total time per	Number of valid
ID	Name	site (hours)	records per hour
1	A10M25JUNC	43,4	537
2	DAWLEYHAYE	3,2	359
3	EALING	29,7	309
4	HESTONRD	6,1	233
5	PUTHIL	67,6	604
6	STOCKLEY R	7,4	139
7	TULSEHIL	40,0	404
8	WESTENDHIL	64,5	364
9	WOOLCIR	13,3	438
		275,29	

Table 2-3 Number of records per site

149,815 records have been captured in total, 122,385 of them valid. Each one is composed by:

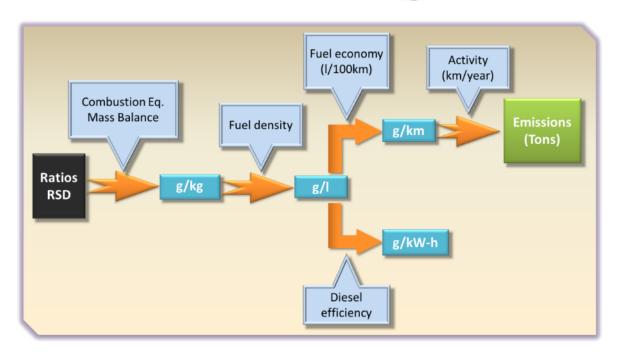
- Photograph of the license plate that allows to retrieve the technical data of each vehicle (type, fuel, euro standard...).
- Kinetic conditions, speed, acceleration and engine load (VSP)¹.
- Pollutants (CO, HC, NO, NO₂ and PM) measured in ratios that are later converted to other units.
- Environmental conditions (pressure, temperature and relative humidity).


The RSD measures the conditions of the gas in the air before passing a vehicle to establish a base condition. Then, it repeats the measurement to evaluate the gas after the vehicle has just passed. The difference between the two conditions represents the vehicle's emissions. The RSD measures the amounts of gas present for CO, CO_2 , HC, NO and NO_2 . The measured quantities of the gas are specifically the number of molecules along the path of the measurement beam. The light beam passes through the exhaust plume and is reflected by the CCM back to the detector, which records the changes in light intensity produced by the absorption of the different gases. From this absorption, concentrations can be calculated by applying Lambert-Beer's law. However, due to the remote nature of the equipment (we do not know the length of the optical path, I), it is not possible to report absolute concentrations, but the RSD provides emission concentrations (ratio of concentrations of each of the pollutants with respect to CO_2).

¹ Opus RSD measures the speed and acceleration of each vehicle. When it is installed, the slope of the road is also measured. With these 3 variables the system automatically calculates the VSP for each record.

2.3 Phase 3 – Data processing

The data processing process is shown below.



- 1. The RSD compiles each session dataset, which is composed of:
 - a. An access file with all the data registered by the RSD.
 - b. All the pictures taken during the session.
- 2. The pictures taken by the RSD camera are processed by an ALPR software (Automatic License-Plate Reader) that recognizes the characters of the license plates of the vehicles and delivers a text-format result, to update the access file.
- 3. Because of different conditions on the sunlight, the camera distance, the vehicles speed and other factors, the ALPR software does not recognize all the license plates. Therefore, all records are checked manually.
- 4. The list of license plates is created, to retrieve the vehicle technical information of each vehicle from the traffic databases. Ricardo accessed number plate databases available in the UK to retrieve very valuable information on the vehicle characteristics: fuel type, vehicle model, VIN, Euro Standard, mileage from the most recent UK MOT test, etc.
- 5. The RSD data is matched to the license plates and the vehicles' technical information, to create a large database that provides complete information for each record.

As mentioned in previous chapter, RSD readings are ratios (or gas concentrations). Those are the emission values directly given by the RSD. Any other units must be calculated after step 5.

From the concentrations given by the RSD, assuming that they are constant throughout the exhaust plume, emissions can be calculated in meaningful units. The following table shows an outline of the different transformations that can be made:

To transform the ratios to emissions in grams of pollutant per kg of fuel, the fuel combustion equation must be used. A series of assumptions must be made, and mass balances must be applied. All these steps are explained in detail on the following website: <u>http://www.feat.biochem.du.edu/whatsafeat.html</u>

The fuel combustion equation is used, assuming CH₂ for diesel and gasoline and CH₄ for CNG:

 $\begin{array}{l} CH_2 + m(0.21O_2 + 0.79N_2) \rightarrow aCO + bH_2O + 2c(C_3H_6) + dCO_2 + eNO + fNO_2 + (0.79m - (e+f)/2)N_2 \text{ (diesel, petrol)} \\ CH_4 + m(0.21O_2 + 0.79N_2) \rightarrow aCO + bH_2O + 2c(CH_4) + dCO_2 + eNO + (0.79m - \frac{e}{2})N_2 \text{ (CNG)} \end{array}$

Mass balances are applied for each element (carbon, hydrogen and oxygen) and the following equations are obtained:

$$CO\left(\frac{g}{kg}\right) = \frac{Q}{1+Q+0.0006xQ'} \times \frac{1}{KgMC} \times M_{w}$$

$$CO_{2}\left(\frac{g}{kg}\right) = \frac{1}{1+Q+0.0006xQ'} \times \frac{1}{KgMC} \times M_{w}$$

$$HC\left(\frac{g}{kg}\right) = \frac{0.0001xQ'}{1+Q+0.0006xQ'} \times \frac{HCRF}{KgMC} \times M_{w}$$

$$NO\left(\frac{g}{kg}\right) = \frac{0.0001xQ''}{1+Q+0.0006xQ'} \times \frac{1}{KgMC} \times M_{w}$$

$$NO_{2}\left(\frac{g}{kg}\right) = \frac{0.0001xQ''}{1+Q+0.0006xQ'} \times \frac{1}{KgMC} \times M_{w}$$

$$PM\left(\frac{g}{kg}\right) = [UV_{smoke}] \times 10$$

Q, Q', Q" and Q"" are the ratios directly obtained from the RSD readings:

$$Q = \frac{CO(\%)}{CO_2(\%)}$$
$$Q' = \frac{HC(ppm \, propano)}{CO_2(\%)}$$
$$Q'' = \frac{NO(ppm)}{CO_2(\%)}$$
$$Q''' = \frac{NO_2(ppm)}{CO_2(\%)}$$

M_w: Molecular weight of each gas:

Gas	M _w (g/mol)
CO	28
HC (propane)	44
NO	30
NO ₂	46
CO ₂	44

KgMC is a parameter that represents the proportion of carbon in the fuel. Thus, depending on the fuel, this value will be different:

Fuel	Diesel	Petrol	CNG	LPG
KgMC	0,014	0,014	0,016	1

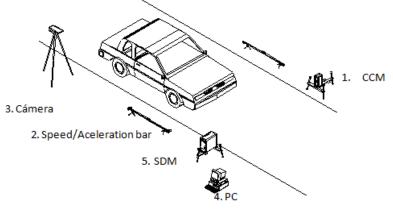
HCRF is a factor that corrects the hydrocarbon measurements:

Fuel	Diesel	Petrol	CNG	LPG
HCRF	1,63	2,2	3,33	1

To obtain emissions in g/l, it is sufficient to multiply the emissions in g/kg by the density of the corresponding fuel:

Fuel	Diesel	Petrol	CNG	LPG
Density (Kg/l)	0,81	0,73	0,46	0,46

From the emissions in g/l, the emissions in g/kW-h (only necessary for heavy duty vehicles) can be obtained by multiplying by a parameter known as 'diesel efficiency'. The value we use is 0.26l/kW-h, which is provided by Volvo.


From the emissions in g/l, the emissions in g/km can also be calculated by multiplying by the consumption (l/km).

ANNEX I - DESCRIPTION OF THE TECHNOLOGY

The AccuScan[™] RSD5000 is a Remote Sensing Device (RSD) that remotely measures exhaust emissions from motor vehicles as they are driven past the remote sensing device on streets and highways. The emissions are measured spectroscopically by casting a narrow infrared (IR) and ultraviolet (UV) beam of light across the road and through the trailing exhaust of passing motor vehicles. A mirror then reflects the IR/UV light back to a series of detectors that measure the amount of transmitted light at characteristic wavelengths absorbed by the pollutants of interest. By subtracting any pre-vehicle background absorption from the amount of IR/UV light absorbed by the various tailpipe pollutants, the system can determine the pollutant levels in the vehicle's exhaust. As the emissions are measured, the video camera captures a digital image of the license plate and the speed/acceleration sensors record the speed and acceleration of the vehicle. The emissions, weather conditions, slope, speed and acceleration data as well as the license plate image are merged within less than a second to complete a measurement record which is then stored in a computer database for future analysis and reporting.

The system measures hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen monoxide and dioxide (NO and NO2 separately, combined as NOx) and particulate matter (PM) ². By taking the ratios of the various pollutants to CO2 and applying stoichiometric rules and other conversion factors (the combustion equation), one can calculate the emission values in meaningful units (i.e. g/kg fuel burned), which can then be converted to g/km and g/kwh with appropriate assumptions ³.

A typical mobile installation of the various RSD components is shown below (Figure 0-1).

Figure 0-1 RSD components

 $^{^2}$ PM is measured as a fuel-specific opacity using ultraviolet light which is more sensitive to fine particulate and less affected by NO₂ than traditional green light opacimeters. Opacity measurements in IR wavelengths of 230 nm are also used to help characterize the type of smoke opacity being observed. Studies have demonstrated our collective opacity measurements can be used as an onroad screen for high PM_{2.5} emissions.

³ Bishop G.A., Stedman D.H.; Acc. Chem. Res., 1996, 29, 489-495.

The main components of an RSD5000 system are described below:

Gas Analyzer / Source Detector Module (SDM)

The RSD has an enclosed Source Detector Module. Using Sapphire windows, the SDM is sealed against the environment to better protect the optics and electronics inside. These windows are impervious to scratching and are easily cleaned. Along with an enclosed SDM, the RSD can have an automated gas calibration cell that eliminates the need for using gas calibration bottles and will calibrate during normal traffic movement (Figure 0-2).

The Corner Cube Mirror (CCM)

The Corner Cube Mirror (CCM) is a simple reflector of the Source light beams. It returns the beams back to the Detector side of the SDM. The CCM consists of three stationary mirrors positioned at a 90° angle with respect to one another, like the corner of a room (Figure 0-3).

Speed/Acceleration System (Detector/Emitter Bars)

This system provides valuable information to the operator about the driving conditions of the vehicles at the time of the measurement. Poor test sites can be immediately identified by test results showing too many cars undergoing hard accelerations or decelerations. The Emitter and Detector Bars of the S/A system along with other parts of the RSD work in tandem to help the operator determine if a test site is favorable to capturing accurate emission readings (Figure 0-4).

Video Camera for License Plate Capture

This high-speed video camera captures a digitized picture of the rear of the vehicle. It does this at the same instant the speed/acceleration values of a vehicle are calculated as the car passes through the exit beam of the S/A detector bar. Camera is software controlled from console. The software allows for control of pan, tilt and zoom, light control offset that automatically compensates for the lighting conditions throughout the day (Figure 0-5).

Figure 0-2 Gas Analyzer / Source Detector Module

Figure 0-3 The Corner Cube Mirror

Figure 0-4 Speed/Acceleration System

Figure 0-5 Video Camera for License Plate Capture

System Control Unit

The System Control Unit (SCU) utilizes Windows based XP, an Intel P4-3.0GHz or greater processor, a built-in 802.11g WiFi communication to the remote GUI Laptop and a built-in GPS module. The SCU gathers and integrates the emission readings, speed and acceleration values and video picture of the license plate. It also archives all information including the digitized vehicle license plate picture for future reference. The SCU also mediates electronic connections between the computer, monitor, CPU and other modules. The SCU provides the connection for all the peripherals to the computer and serves as a central power supply for the system (Figure 0-6).

Figure 0-6 System Control Unit

Weather Station

The Weather Station monitors external temperature and barometric pressure. The station includes an external temperature sensor. The console includes a power adapter with battery backup, backlit display for easy viewing, and a serial interface to a computer (Figure 0-7).

Figure 0-7 Weather Station

Emissions concentration values and other related data are stored in a computer and can also be monitored remotely by an operator stationed in a mobile unit parked safely along the roadside.

Opus RSD5000 measures the following emissions of each individual vehicle:

- 1. Carbon dioxide (CO₂)
- 2. Carbon monoxide (CO)
- 3. Nitric monoxide (NO)
- 4. Nitrogen dioxide (NO₂)
- 5. Hydrocarbons (HC)
- 6. Opacity and/or particulate matter (PM)

The RSD measures CO, HC, CO₂ and opacity via non-dispersive infrared spectroscopy (for the carbon species) and NO_x as well as also opacity via dispersive ultraviolet spectroscopy over 0.5 seconds in the trailing exhaust of vehicles as they pass roadside RSD installations. RSD software determines the ratios of CO/CO₂, HC/CO₂, NO/CO₂ and NO₂/CO₂ in the diluted and dispersed exhaust plumes and applies the mathematics of chemical mass balance of internal combustion to calculate tailpipe concentrations that are corrected for water and excess air.

Chemical mass balance states that carbons introduced as fuel (- CH_2 -) must be emitted as hydrocarbons, partially oxidized CO, or fully oxidized CO₂.

The entire equipment can be deployed, aligned, calibrated, and commissioned within 20 minutes by a single operator. In contrast to competing units which can take hours to set-up and require reflectors to be embedded into roadways, the RSD5000 deployment is a) fast and easy, b) entirely stand-alone (no poles or roadway infrastructure required), and c) places nothing on the traveled road surface; making permitting that much easier.

ANNEX II – THE TEAM OF THE PROJECT

The team that was involved in the project is shown in this chapter.

Name:	Company:	Role:		
Josefina de la Fuente	Opus RSE	CEO		
For the past 12 years she has been dedicated exclusively to the remote sensing				
technology and its various applications in Europe. Since 2013, she has been the Director				
of Opus RSE.				

Name:	Company:	Role:		
Javier Buhigas	Opus RSE	Project manager		
Javier has 8 years of experience in consulting, project management and data analysis. He				
played a key role in the comprehensive analysis of the data from the 2017 Remote				

Sensing project in Barcelona (100,000 valid records of remote sensing measurements).

Name:	Company:	Role:	
José Montero	Opus RSE	Technical leader	
José has 10 years of experience both in national and international projects, 5 years			
working in Opus RSE, being laboratory responsible. Currently he is CTO of the company			
and he has been responsible of the analysis of the data compiled in the ICCT London			
project.			

Name:	Company:	Role:
David Carslaw	id Carslaw Ricardo E&E	
David holds a joint position be	etween Ricardo Energy & Enviro	onment, where he is
Knowledge Leader for Air Poll	ution Science, and the Universi	ty of York, where he is a
Reader in Air Pollution Science within the Department of Chemistry. David has over 20		
years' experience as an air quality scientist with expertise in urban air pollution. Recent		
work has included the comprehensive measurement of vehicle emissions using remote		
sensing techniques, which has yielded many new insights into urban vehicle emissions.		

Name:	Company:	Role:
Ben Fowler	Ricardo E&E	Project manager
Ben has 3 years' experience as air quality consultant in Ricardo Energy & Environment. H		
has played a key role in the management of Ricardo Energy & Environment's deployment		
of equipment in this project. Furthermore, Ben was part of the field team that deployed		
the AccuScan equipment over the 2017/18 winter.		

Name:	Company:	Role:	
Les Phelps	Ricardo E&E	Team Member	
Les joined Ricardo Energy and Environment in 2017 and has been a field team member fo			
the entirety of this project, becoming experienced in deployment and operation of the			
equipment.			

Name:	Company:	Role:	
Tom Green	Ricardo E&E	Team Member	
Tom joined Ricardo Energy and Environment in 2017 and has been a field team member			
for the entirety of this project, becoming experienced in deployment and operation of the			
equipment			

Name:	Company:	Role:		
Rebecca Rose	Ricardo E&E	Senior Consultant		
Rebecca has a PhD in spectroscopy and led the data analysis and management of the ICCT				
project and helped coordinate collaboration with the University of York.				

ANNEX III – SAMPLING PLAN CALENDAR

Next table shows the specific days that have been measured at each of the sites:

Day	Site ID	Comments
06 November 2017	EALING	Problems calibrating the S/A bar due to laser alignment. Mostly vehicles are passenger cars. Some HDV's and buses (site situated along bus route). Traffic does become stationary intermittently and many cars are deaccelerating. Dry day.
07 November 2017	EALING	Problems calibrating the S/A bar due to laser alignment. Mostly vehicles are passenger cars. Some HDV's and buses (site situated along bus route). Traffic does become stationary intermittently and many cars are deaccelerating. Intermittent rain showers throughout day.
08 November 2017	EALING	Problems calibrating the S/A bar due to laser alignment. Mostly vehicles are passenger cars. Some HDV's and buses (site situated along bus route). Traffic does become stationary intermittently and many cars are deaccelerating. Dry day
09 November 2017	EALING	Problems calibrating the S/A bar due to laser alignment - new S/A bar arrived ready to use for next week. Mostly vehicles are passenger cars. Some HDV's and buses (site situated along bus route). Traffic does become stationary intermittently and many cars are deaccelerating. Dry day.
15 November 2017	DAWLEYHAYE	New S/A bar - all ok. Problems with deacceleration and slow-moving traffic. Decided to abandon measurements at site.
16 November 2017	WESTENDHIL	Good site, positive acceleration and good valid gas measurements.
17 November 2017	WESTENDHIL	Good site, positive acceleration and good valid gas measurements.
20 November 2017	WESTENDHIL	Good site, positive acceleration and good valid gas measurements, 2 instances of rain showers during day
21 November 2017	WESTENDHIL	Good site, positive acceleration and good valid gas measurements. Dry day. On last audit of day SDM was failing to audit and gas could be heard from valve into SDM.
22 November 2017	WESTENDHIL	Good site, positive acceleration and OK valid gas measurements. Dry, windy day. Arrived at site late after checking problem with SDM audit. This looks to be fixed as audits are now successful.
23 November 2017	WESTENDHIL	Good site, positive acceleration and good valid gas measurements. Dry, sunny day.

Day	Site ID	Comments
27 November 2017	STOCKLEY R	Average site - low traffic, cars not accelerating - no gradient - intermittent rain.
28 November 2017	WESTENDHIL	Condensation on mirrors and rain first thing. Measured from 09:30 until 16:00.
29 November 2017	WESTENDHIL	Traffic at a standstill during peak periods.
30 November 2017	WESTENDHIL	Traffic from 07:45-09:15 made measurements very difficult.
04 December 2017	A10M25JUNC	Busy traffic flow, around 800-900 cars per hour. Reliant on M25 running smoothly. Lots of HDVs.
05 December 2017	A10M25JUNC	Lots of HDVs and articulated lorries made setting up at rush hour difficult. Regardless, connectivity issues particularly when carrying out the second cylinder. Estimate we lost around 2000 vehicles because of that difficulty.
06 December 2017	A10M25JUNC	Started a bit later when safer to cross road. Connectivity issues throughout day, probably lost around 1000 vehicles as a result. Valid gas during last hour of measuring was over 80%.
07 December 2017	HESTONRD	Tried this wet weather site under the M4. Spray from vehicles still inhibited measurements during first half of the day. However, once road dried up, getting 700 vehicles per hour with valid gas at 70%.
11 December 2017	HESTONRD	Wet day - Spray from vehicles inhibiting measurements.
12 December 2017	WOOLCIR	Flat gradient meaning many vehicles are deaccelerating. Last hour saw around 1000 vehicles per hour.
13 December 2017	WOOLCIR	Wet day - Spray from vehicles inhibiting measurements. Obtained 300-400 measurements in the morning without rain but from around 10am continuous rain and spray inhibiting measurements. Packed away by 12:00 due to this.
14 December 2017	WOOLCIR	Nothing to remark.
02 January 2018	TULSEHIL	Wet day - started measurements around 1pm with intermittent rain. Good site with incline although some vehicles deaccelerating due to many turning left down Hillside Road.
03 January 2018	TULSEHIL	Dry windy day, valid gas around 45% due to vehicles turning left and occasional build-up of traffic. High flows of around 650/hour is good though.

Day	Site ID	Comments
04 January 2018	TULSEHIL	Wet morning, couldn't start measuring until around 10:30 due to rain then spray from HDVs causing splash onto mirrors. Dry since 11am. Around 43% validity.
08 January 3018	A10M25JUNC	Good site but very busy when trying to audit. Intermittent connectivity issues during day.
09 January 2018	A10M25JUNC	Good site but very busy when trying to audit. Intermittent connectivity issues during day. Light rain during last few hours of testing
10 January 2018	A10M25JUNC	Good site but slow to set up due to busy road and having to repeat audits.
11 January 2018	A10M25JUNC	Good site but slow to set up due to busy road. Light intermittent rain throughout day requiring some recalibrations.
18 January 2018	PUTHIL	Replacement S/A bar delivered Wednesday 17/01. Good site, high valid gas as on steady inclining gradient. A small rain shower around 3:30.
19 January 2018	PUTHIL	Dry sunny day. Valid gas at ~70%
21 January 2018	TULSEHIL	Ok site, some queuing vehicles caused by traffic lights and vehicles turning left at the junction up the road. Some vehicles deaccelerating
22 January 2018	TULSEHIL	Ok site, some queuing vehicles caused by traffic lights and vehicles turning left at the junction up the road. Some vehicles decelerating. Late set up due to busy road making calibration and audits difficult.
23 January 2018	TULSEHIL	Intermittent light rain from start of day and spray from vehicles produces challenging conditions. Packed up earlier due to too much surface water.
29 January 2018	PUTHIL	Measured from 13:30 - 17:00 - intermittent rain showers stopped measurements half way through but brightened up from 15:30
30 January 2018	PUTHIL	Dry, clear, sunny day.
31 January 2018	PUTHIL	Rain in the morning, heavy rain between 10:30 - 12:00. Dry and sunny in the afternoon
01 February 2018	PUTHIL	Dry for most of day with very short spell of light rain around middle of day.
14 February 2018	PUTHIL	3 hours of measurements made before rain stopped play.
15 February 2018	PUTHIL	Dry for the most part.
16 February 2018	PUTHIL	Measuring 08:00-12:55

Day	Site ID	Comments
		Rain delayed setting up until 12:00. York kit was broke so
09 April 2018	PUTHIL	measuring stopped.
		Cloudy but dry day. York kit was also broken today so
10 April 2018	PUTHIL	measuring stopped early.
11 April 2018	PUTHIL	Cloudy but dry day.
12 April 2018	PUTHIL	Light rain shower at around 11am, rest of day dry

ANNEX IV – DESCRIPTION OF THE DATABASE

The following table shows a description of each field in the delivered database of emissions and vehicles' technical data.

Field	Description
search_term	License plate
keeper_start_d	Date current keeper took ownership of the vehicle.
ate	
keeper_previo	Date previous keeper took ownership of the vehicle.
us_acquire	
keeper_previo	Date previous keeper disposed of the vehicle.
us_dispose	
keeper_previo	Number of previous keepers.
us_keepers	
keeper_v5c_da	Issue date of latest V5C form (from June 2004).
te	
keeper_vic_da	Date Vehicle Identification Check has been Issued.
te	Deep on Eail nearly fan tha Mahiela Islantifiantian Chaoly
keeper_vic_res	Pass or Fail result for the Vehicle Identification Check
ult vehicle_make	The full make of a vehicle. For example, RENAULT
	The full make of a vehicle. For example, RENAULT.
vehicle_model	The full model of a vehicle. For example, CLIO RN.
vehicle_cheris	A marker to show that the vehicle has undergone a cherished transfer (plate
hed_transfer	change) at some point in its life.
vehicle_manuf	Vehicle date of manufacture (if only the year is known, this will display 31-12-
actured_date	YYYY). On other occasions no date of manufacture was provided therefore the
uchiele versiety	date of first registration may be shown instead.
vehicle_registr ation_date	The Date a Vehicle was First Registered and Made Known to the DVLA.
vehicle_v5c_da	Issue date of latest V5C form (from June 2004)
te	
vehicle_prior_	Indicates that a vehicle had been used prior to its initial registration with the
use	DVLA.
vehicle_vin_ful	The Vehicle Identification Number as Allocated to the Vehicle by the Original
I	Vehicle Manufacturer (VIN).
vehicle_vin_en	Last 4 characters of vehicle VIN.
ding	
vehicle_colour	Generic Vehicle Colour e.g. Blue, Red, White, Black. Vehicles can also be coded as
	two distinct colours in which case these will be separated by a slash:
	'BLUE/GREEN'. Other vehicles may be coded as 'MULTI-COLOUR'.
vehicle_countr	Manufacturer Country of Origin (final plant assembly).
y_of_origin	
vehicle_export	Shows if the vehicle is recorded as being permanently exported a Flag of "1" will
ed	return in the XML.
vehicle_export	The data the vehicle was exported from the UK as advised to the DVLA.
_date	

Field	Description
vehicle_import	Populated only where a vehicle was directly imported from outside the UK.
ed_uk	
 vehicle_import	Identifies that a vehicle has been imported into Great Britain from Northern
ed_ni	Ireland.
vehicle_import	The date the vehicle was imported into the UK and advised to the DVLA.
date	·
	0 = Vehicle has not been recorded scrapped
ed	1 = The vehicle has been scrapped
	2 = A certificate of destruction has been issued.
vehicle_scrapp	The date the vehicle was scrapped as advised to the DVLA.
ed_date	
vehicle_unscra	Indicates that the vehicle is no longer deemed to be scrapped and is on the road.
pped	
vehicle_body	Vehicle body style description.
vehicle_body_	Vehicle body class style description.
class	
vehicle_seat_c	Seat Count (driver included).
ount	
vehicle_wheel	Vehicle Wheelbase Length in mm.
plan	
vehicle_co2	DVLA Carbon Dioxide emission levels (2001 vehicles onwards).
vehicle_noise_	The total output (dB) from the vehicle with the engine running at a higher speed.
engine	
vehicle_noise_	The total output (dB) from the vehicle as it travels along the road.
drive_by	
vehicle_cc	Engine displacement in cubic centimetres (cc).
vehicle_engine	The vehicle's engine number. Typically stamped onto the engine or on a rating
_number	plate. Checking the value recorded here with the engine in the car can identify
	whether the engine has been swapped.
vehicle_fuel_ty	Fuel description e.g Petrol, Diesel etc.
ре	
vehicle_max_p	The maximum net power of the engine (including cooling systems).
ower	
vehicle_max_t	The maximum weight permissible including payload.
ech_mass	
vehicle_power	Maximum net power divided by mass (Motorcycles Only).
_to_weight	
vehicle_trailer	The maximum total weight of a braked trailer incl. payload.
_braked	
vehicle_trailer	The maximum total weight of an unbraked trailer incl. payload.
_unbraked	
vehicle_gross_	The maximum weight of a vehicle including payload
weight	
vehicle_fuel_c	
ode	
vehicle_cdl_id	
mvris_vrm	MVRIS Vehicle Registration Mark (VRM) - This should be the same as the
	DVLA/DVA VRM.

Field	Description
mvris_first_reg	MVRIS Vehicle Registration Date (this date should be the same as the Date of First
_date	Registration).
	Manufacturer Engine Size in Litres.
size	
mvris_cc	Manufacturer Exact Cubic Capacity.
mvris_bhp_co	Manufacturer Brake Horse Power (BHP).
unt	
mvris_door_co	Manufacturer number of doors.
unt	
mvris_body_d	Manufacturer Body Description.
esc	
mvris_cab_typ	Cab Type generally relates to commercial vehicles.
е	
mvris_transmis	Gearbox Type.
sion	
mvris_axle_co	Number of axles.
unt	
mvris_mvris_c	
ode	
mvris_vehicle_	Manufacturer Advised Vehicle Succession.
series	
mvris_vehicle_	Manufacturer Country of Origin (final plant assembly).
origin	
mvris_vehicle_	Manufacturer Vehicle Description.
desc	
mvris_gears_c	Number of forward gears.
ount	
mvris_drive_ty	Drive type e.g. FWD, 4WD RWD etc.
pe	Date vehicle was first visible within the MVRIS data.
mvris_visibility date	Date vehicle was first visible within the wivkis data.
uate mvris_setup_d	Date vehicle was officially introduced to the UK market as advised by the vehicle
ate	manufacturers.
mvris_body_sh	
ape_roof_heig	connected vehicle roor shape and height connectation.
ht	
mvris_drive_ax	The number and position of the given wheels.
le	
mvris_gross_c	Gross combined weight of a vehicle including payload - generally applies to heavy
ombined_weig	commercial vehicles only.
ht	,
mvris_vehicle_	Maximum gross vehicle weight - generally applies to heavy commercial vehicles
gross_weight	only.
mvris_vehicle_	Vehicle height in millimeters.
height	
mvris_kerb_w	Vehicle weight when loaded with all fluids (including full tank of fuel) and the
eight	driver.

Field	Description
mvris_vehicle_	Vehicle length in millimeters.
length	Number of costs
mvris_seat_co	Number of seats.
unt	
mvris_power_	Method of power delivery to engine combustion chamber.
delivery	
mvris_rigid_art	Bodystyle relating to heavy commercial vehicles only.
ic	
mvris_type_ap	Vehicle Type Approval Category.
proval_categor	
у	
mvris_unladen	Vehicle weight without payload or passengers - commercial vehicles only.
_weight	
mvris_wheelba	Length of the wheelbase in millimeters.
se_length	
mvris_vehicle_	Width of vehicle in millimeters (may or may not include wing mirrors).
width	
mvris_primary	Primary Fuel Flag. Returns 'Y' when providing data for vehicle's primary fuel
fuel	source (in case of more than 1 source fitted to vehicle).
	Maximum power output of the engine.
kw	
mvris_rpm_po	The engine RPM at which maximum power output occurs.
wer	
mvris_torque_l	The maximum amount of torque generated by the engine (in Pound/Foot).
b	
mvris_torque_	The maximum amount of torque generated by the engine (in Newton/Metres).
nm	
mvris_rpm_tor	The engine RPM at which maximum torque is produced.
que	The engine in the which maximum torque is produced.
mvris_co2	Vehicle Manufacturer derived Carbon Dioxide Emission value.
mvris_urban_c	
old_mpg	cold start in miles per gallon.
mvris_extra_ur	Value of the fuel used on non-urban routes as tested by the vehicle manufacturer
ban_mpg	using a pre-warmed engine in miles per gallon.
mvris_combin	Average value of the fuel used on urban/non-urban roads as test by the vehicle
ed_mpg	manufacture in miles per gallon.
mvris_urban_c	Value of the fuel used on urban roads as test by the vehicle manufacturer at a
old_lkm	cold start. Figure given in litres/100Km.
mvris_extra_ur	Value of the fuel used on non-urban routes as tested by the vehicle manufacturer
ban_lkm	using a pre-warmed engine. Figure given in litres/100Km.
mvris_combin	Average value of fuel the vehicles uses on urban/non-urban routes. Figure given
ed_lkm	in litres/100Km.
mvris_max_sp	Maximum speed in miles per hour.
eed_mph	
mvris_max_sp	Maximum speed in kilometers per hour.
eed_kph	
mvris_accelera	Acceleration Time 0-62mph (s).
tion_mph	

Field	Description
mvris_accelera	Acceleration Time 0-100kmh (s).
tion_kph	
mvris_engine_	Manufacturer engine description.
description	
mvris_engine_l	Engine location within the vehicles body.
ocation	
mvris_engine_	Manufacturer engine make NB: This may differ to the vehicle manufacturer in the
make	case of LCV's. Motorcaravans and HGV's.
mvris_bore	Cylinder Bore Diameter (mm).
mvris_stroke	Piston Stroke Length (mm).
mvris_fuel_del ivery	Fuel delivery e.g. direct or indirect injection.
mvris_cylinder _arrangement	Cylinder arrangement.
mvris_cylinder _count	Number of cyclinders.
	Number of valves per cyclinder.
mvris_valve_g ear	Arrangement and operation of the valves in relation to the camshaft.
mvris_make	Manufacturer Make Description.
mvris_model	Manufacturer Model Description.
mvris_body	Manufacturer Body Description.
mvris_fuel_typ e	Fuel description e.g Petrol, Diesel etc.
mileage_milea ge_record_val ue	Mileage Reading.
mileage_milea ge_record_dat e	Date the mileage is recorded.
mileage_milea ge_record_sou rce	Mileage Data Source.
mot_results_m ot_test_odom eter_value	Mileage of a vehicle at its last technical inspection.
mot_results_m ot_test_odom eter_unit	Unit for the mileage.
NORMA EURO	Applicable Euro Standard. 0 = pre-Euro
SITE_AREA ID	Code for location of the measurements
SITE NAME	Name of the site of the measurements
COUNTRY	Country of the site of the measurements
CITY	City of the site of the measurements
Slope	Slope of the road in degrees

Field	Description
SessionDate_d	Date of the measurements
d/mm/yyyy	
Start_SessionTi	Start time of the session
me_hh:mm:ss	
End_SessionTi	End time of the session
me_hh:mm:ss	
EmissionTime_	Time of the measurement
hh:mm:ss	
Speed Km/h	Vehicle's speed (Km/h)
Acceleration	Vehicle's acceleration (Km/hs)
Km/hs Tomporaturo	Ambient temperature (°C)
Temperature_ ºC	
Humidity	Ambient relative humidity (%)
Pressure	Ambient pressure
Longitude_Dec	Coordinates of the site (longitude)
imal	
Latitude_Deci	Coordinates of the site (latitude)
mal	
VSP	Vehicle Specific Power (kW/Metric Ton)
Plume_Size	Size of the plume (%cm)
COCO2	Concentration of CO
HCCO2	Concentration of HC
NOCO2	Concentration of NO
NO2CO2	Concentration of NO2
NH3CO2	Concentration of NH3
uvSmoke	Opacity
CO_gpl	CO (g/l)
CO2_gpl	CO2 (g/l)
HC_gpl	HC (g/I)
NO_gpl	NO (g/l)
NO2_gpl	NO2 (g/l)
NOx_gpl	NOx (g/l)
NH3_gpl	NH3 (g/l)
PM_uvSmoke_	Particulate matter, PM (g/l)
gpl	
CO_gpKm	CO (g/km)
CO2_gpKm	CO2 (g/km)
HC_gpKm	HC (g/km)
NO_gpKm	NO (g/km)
NO2_gpKm	NO2 (g/km)
NOx_gpKm	NOx (g/km)
NH3_gpKm	NH3 (g/km)
PM_uvSmoke_	Particulate matter, PM (g/km)
gpKm	

Field	Description
CO_gpkWhr	CO (g/kW-h)
CO2_gpkWhr	CO2 (g/kW-h)
HC_gpkWhr	HC (g/kW-h)
NO_gpkWhr	NO (g/kW-h)
NO2_gpkWhr	NO2 (g/kW-h)
NOx_gpkWhr	NOx (g/kW-h)
NH3_gpkWhr	NH3 (g/kW-h)
PM_uvSmoke_ gpkWhr	Particulate matter, PM (g/kW-h)
CO_gKg	CO (g/kg)
CO2_gKg	CO2 (g/kg)
HC_gKg	HC (g/kg)
NO_gKg	NO (g/kg)
NO2_gKg	NO2 (g/kg)
NOx_gKg	NOx (g/kg)
NH3_gKg	NH3 (g/kg)
PM_uvSmoke_	Particulate matter, PM (g/kg)
gKg	
EM_SCORE_gK	Emission score (g/kg)
g	
FUEL_SCORE_g	Fuel score (g/kg)
Кg	
Valid	Valid record