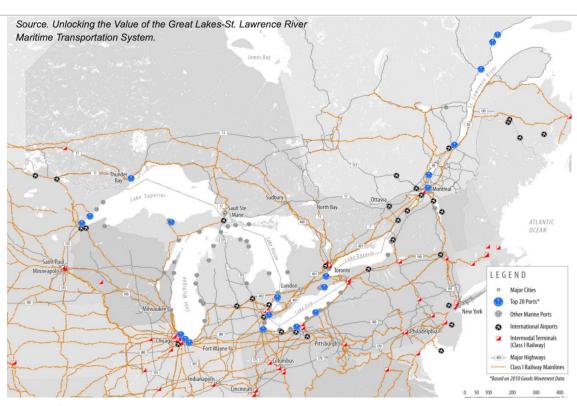
# Great Lakes-St. Lawrence Seaway ship emissions inventory, 2019

Zhihang Meng and Bryan Comer, Ph.D.

Presented by: Zhihang Meng, Associate Marine Researcher


April 20, 2022



#### Background of this study

- Stretching more than 3,700 kilometers from Atlantic Ocean to North America, as an important commercial waterway.
- Over 110 ports over the U.S. and Canada shoreline.
- Transporting over 143.5 million tonnes of cargo with a value of \$ 15.2 billion, 2017.
- Planning to double maritime trade with Western Europe, double annual passenger traffic in next five years.<sup>1</sup>





<sup>&</sup>lt;sup>1</sup> Great Lakes St. Lawrence Maritime Five-Year Action Plan (2021-2026), https://gsgp.org/media/gdpcsqz1/five-year-action-plan-9-21-21.pdf

#### Background of this study

- the Great Lakes St. Lawrence Governors & Premiers (GSGP) published Green Shipping Action Plan in 2021.
- > Tend to improve regional environmental performance.
- Planning to assess current impacts by carrying out detailed annual emission inventories and set reduction targets based on the data.
- Planning to carry out projects on smart shipping, voyage optimization and alternative fuels.





#### Background of this study

- Last emission inventory was published by EPA in 2012.<sup>1</sup>
- 541,336 tonnes of CO<sub>2</sub> in 2002 and predicted 704,390 tonnes CO<sub>2</sub> by 2020.
- Only include category 3 vessels, within U.S. portion of the Great Lakes.<sup>2</sup>



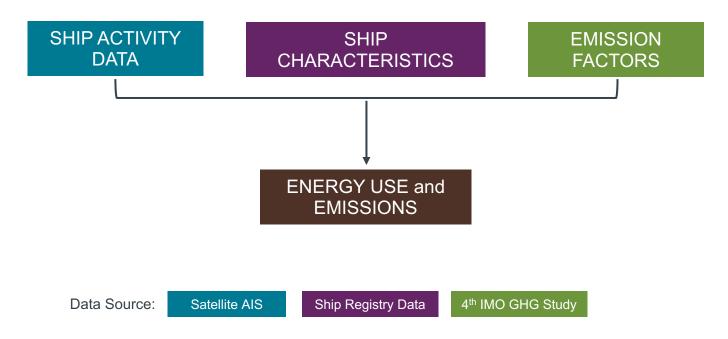
Table 4-13 2002 Total C3 Inventory for the U.S. Great Lakes Domain

|                 | ANNUAL EMISSIONS (METRIC TONNES) <sup>a</sup> |           |                   |     |       |                 |         |
|-----------------|-----------------------------------------------|-----------|-------------------|-----|-------|-----------------|---------|
| EMISSION TYPE   | NOX                                           | $PM_{10}$ | PM <sub>2.5</sub> | HC  | CO    | SO <sub>2</sub> | $CO_2$  |
| Port            | 491                                           | 44        | 41                | 17  | 40    | 346             | 22,476  |
| Interport       | 14,528                                        | 1,135     | 1,044             | 481 | 1,134 | 8,420           | 518,860 |
| Total Emissions | 15,019                                        | 1,179     | 1,085             | 498 | 1,174 | 8,766           | 541,336 |

<sup>&</sup>lt;sup>a</sup> The port emission totals in this table are slightly less than those in Table 4-12 due to the gridding process and trimming to include only port emissions that fall within the emission inventory boundaries.

Table 4-27 Category 3 Vessel Inventories in the U.S. Great Lakes for 2020 Scenarios<sup>a</sup>

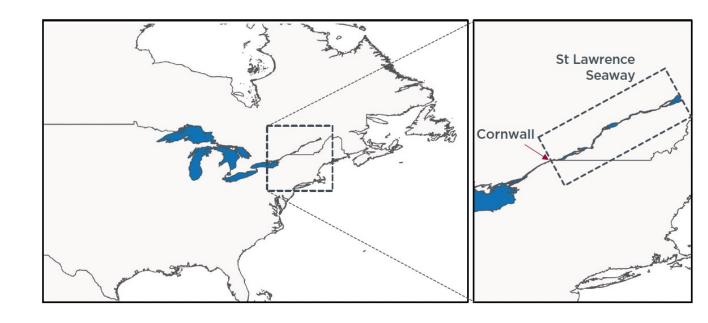
|                     | ANNUAL EMISSIONS (METRIC TONNES) |           |                   |     |       |                 |         |  |
|---------------------|----------------------------------|-----------|-------------------|-----|-------|-----------------|---------|--|
| SCENARIO            | $NO_X$                           | $PM_{10}$ | PM <sub>2.5</sub> | HC  | CO    | SO <sub>2</sub> | $CO_2$  |  |
| Reference           | 19,842                           | 1,613     | 1,484             | 682 | 1,607 | 11,993          | 740,624 |  |
| Control             | 16,420                           | 207       | 190               | 676 | 1,602 | 420             | 704,390 |  |
| Delta Emissions     | -3,422                           | -1,406    | -1,294            | -6  | -5    | -11,574         | -36,235 |  |
| Delta Emissions (%) | -17%                             | -87%      | -87%              | 0%  | 0%    | -97%            | -5%     |  |


<sup>&</sup>lt;sup>a</sup> These inventories include all emissions within the U.S. Great Lakes.

<sup>&</sup>lt;sup>1</sup>Economic Impact of the Category 3 Marine Rule on Great Lakes Shipping, by EPA, 2012, https://cfpub.epa.gov/si/si\_public\_record\_report.cfm?Lab=OTAQ&dirEntryID=230803

<sup>&</sup>lt;sup>2</sup>Category 3 vessels are defined as having engines with a per cylinder displacement of at least 30 liters per cylinder and are usually the largest vessels on the lakes.

#### Our approach for estimating emissions and energy use

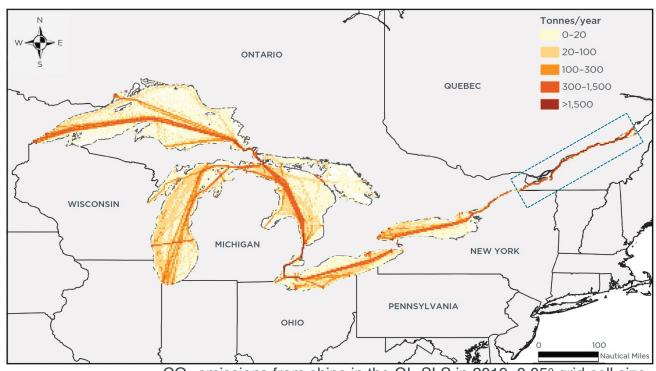

——Systematic Assessment of Vessel Emissions (SAVE) model





#### Study area of Great Lakes-St. Lawrence Seaway (GL-SLS)

- Including the whole GL-SLS region of both U.S. and Canada portion.
- Separate regions of GL and SLS, to find more different emission features.






#### CO<sub>2</sub> emissions from ships in the GL-SLS in 2019

- ➤ 1.6 Mt of CO<sub>2</sub> emissions in the GL-SLS
- ➤ 1 Mt CO₂ emissions occurred within U.S. waters.
- Higher emissions intensity in the SLS than GL, with relatively narrow sailing channel.



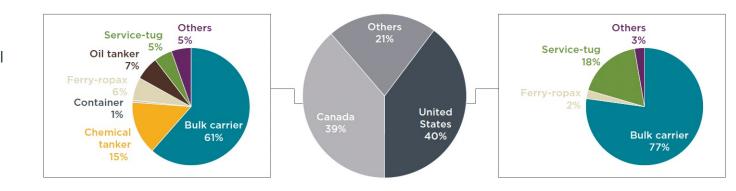


 $\text{CO}_2$  emissions from ships in the GL-SLS in 2019, 0.05° grid cell size

#### Number and types of identified vessels in GL-SLS in 2019

- ➤ Identified 953 vessels operating in the GL-SLS in 2019.
- ▶ Bulk carriers were the most common (40%) and second most common were chemical tankers (22%).
- Canada, Marshall islands and U.S. were the top 3 flag states.

| Flag state          | Bulk carrier | Chemical<br>tanker | Container | Ferry-ropax | Oll tanker | Service-tug | All other ship types | Total |
|---------------------|--------------|--------------------|-----------|-------------|------------|-------------|----------------------|-------|
| Canada              | 50           | 24                 | 1         | 20          | 4          | 47          | 38                   | 184   |
| Marshall<br>Islands | 85           | 45                 | 2         | 0           | 14         | 1           | 4                    | 151   |
| United States       | 34           | 0                  | 0         | 3           | 0          | 45          | 16                   | 98    |
| Panama              | 46           | 12                 | 26        | 0           | 2          | 0           | 3                    | 89    |
| Liberia             | 30           | 20                 | 8         | 0           | 10         | 0           | 1                    | 69    |
| All others          | 134          | 107                | 26        | 1           | 40         | 3           | 51                   | 362   |
| Total               | 379          | 208                | 63        | 24          | 70         | 96          | 113                  | 953   |




#### Share of CO<sub>2</sub> emissions by flag state and ship type

U.S.- and Canadaflagged vessels each responsible for approximately 40% of total

CO<sub>2</sub> emissions in thousand tonnes Chemical All other **Bulk carrier** Flag state tanker Ferry-ropax Oll tanker Service-tug ship types Total Container **United States** 499 0 0 15 0 115 18 646 Canada 386 92 4 40 41 31 34 628 All others 125 74 88 0 29 0 35 351 166 91 55 70 87 Total 1.010 146 1.626

1 Mt (62%) was emitted by bulk carriers; chemical tankers were a distant second with 10% and tugs emitted about 9%

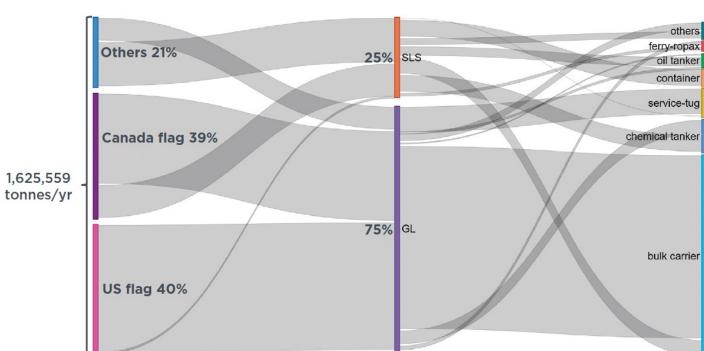




#### Ship CO<sub>2</sub> emissions by operating phase

- Over 78% of the emissions were emitted by ships sailing at cruising speeds.
- ➤ 10.5% of emissions occurred when ships were at anchor and about 8.5% occurred when at berth.
- > 19% of emissions were were from ships at anchor or at berth, which could be reduced or eliminated using a combination of shore power and on-board batteries or fuel cells.

CO<sub>2</sub> emissions in thousand tonnes


| Operating phase | Bulk carrier | Chemical<br>tanker | Container | Ferry-ropax | Oil tanker | Service-tug | All other ship types | Total |
|-----------------|--------------|--------------------|-----------|-------------|------------|-------------|----------------------|-------|
| At-anchor       | 51           | 33                 | 38        | 15          | 13         | 8           | 14                   | 171   |
| At-berth        | 18           | 57                 | 0         | 13          | 34         | 2           | 15                   | 138   |
| Cruising        | 922          | 73                 | 52        | 24          | 23         | 131         | 54                   | 1,279 |
| Maneuvering     | 19           | 3                  | 2         | 3           | 1          | 5           | 4                    | 37    |
| Total           | 1,010        | 166                | 91        | 55          | 70         | 146         | 87                   | 1,626 |



#### CO<sub>2</sub> emissions in GL and SLS

- 75% were emitted in the GL.
- the SLS represents less than 1% of the GL-SLS geographic area, and yet it is home to 25% of GL-SLS CO<sub>2</sub> emissions.

The CO<sub>2</sub> emissions within each region were distinct.

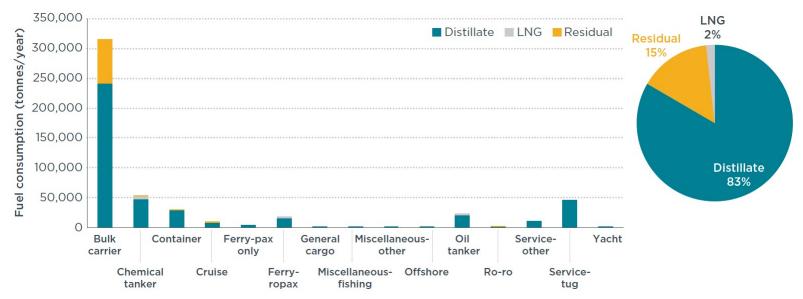




bulk carrier 62%

others 6% ferry-ropax 3%

oil tanker 4%


container 6%

service-tug 9%

10%

#### Fuel consumption of vessels in the GL-SLS

- ≥ 510,000 t fuel consumed in 2019, equal to 6 terawatt-hours or 20 trillion BTU, about enough to power a 70,000-person GL city for a year.¹
- Most 83% of the fuel consumption was distillate fuels, still 15% residual fuel consumption, used by ships that have exhaust gas cleaning systems, also known as "scrubbers."



# Takeaway bullets

- > Ships consumed more than 500,000 tonnes of fuel, equal to 6 terawatt-hours or 20 trillion BTU, about enough to power a 70,000-person GL city for a year.<sup>1</sup>
- ➤ Approximately 1.6 Mt of CO<sub>2</sub> emissions in the GL-SLS in 2019, equivalent to ~350,000 cars.<sup>2</sup>
- ➤ By ship type, bulk carriers were the largest contributor to GL-SLS CO₂ emissions, accounting for 62%.
- ➤ U.S.- and Canada-flagged vessels emitted 80% of the CO<sub>2</sub> emissions in the GL-SLS region in 2019, split roughly evenly.
- By operating phase, 19% of emissions were from ships at anchor or at berth, which could be reduced or eliminated using a combination of shore power and on-board batteries or fuel cells.



### More information of this work

The briefing paper is available at <a href="https://theicct.org/publication/ships-great-lakes-emissions-mar22">https://theicct.org/publication/ships-great-lakes-emissions-mar22</a>.

#### Appendix of the paper includes:

- ➤ CO₂ emission and fuel consumption results of the Great Lakes and St. Lawrence portions of the GL-SLS.
- ➤ Other climate and air pollutant emissions results, including BC, SOx, PM<sub>10</sub>, PM<sub>2.5</sub>, NOx, VOC, etc.
- ➤ ArcGIS shapefile contains the gridded CO<sub>2</sub> emissions inventory for the GL-SLS at 0.05°×0.05° resolution.

We intended to periodically update this analysis with results for other years, as data and resources allow.



## What questions can I answer?

I'm happy to have a discussion today and you can also reach out to: Zhihang Meng, Associate Marine Researcher, z.meng@theicct.org.



