ICCT comments on EPA's proposed heavy-duty engine and vehicle standards

Sara Kelly, Claire Buysse, and Ray Minjares ICCT Heavy-duty vehicles program 10 May 2022

How did we get here?

2001: EPA adopts PM and NO_x engine standards through model year 2010: 200 mg/bhp-hr

Jan 2020: EPA publishes *Advance Notice of Proposed Rulemaking (ANPR)* Aug 2021: President Biden issues an executive order asking EPA to:

- consider <u>new NO_x emission standards</u> starting in model year 2027
- consider revising Phase II GHG standards and the role of ZEVs in model years 2027–2029
- consider a <u>Phase III GHG standard</u> starting as soon as model year 2030

Dec 2021: California HDV Omnibus regulation finalized: <u>20 mg/bhp-hr</u>
Feb 2022: EPA releases *Notice of Proposed Rulemaking (NPRM)* **actual proposal**
May 2022: public comment deadline

. . .

COVID-19 has revealed the central role of HDVs in pollution exposure disparities

"... targeting NO_x emissions from heavy-duty diesel vehicles is likely the most effective strategy for reducing disparities nationwide."

Kerr, Gaige Hunter, Daniel L. Goldberg, and Susan C. Anenberg. 2021. "COVID-19 Pandemic Reveals Persistent Disparities in Nitrogen Dioxide Pollution." *Proceedings of the National Academy of Sciences* 118 (30): e2022409118. <u>https://doi.org/10.1073/pnas.2022409118</u>.

EPA's proposal, in a few bites

NO_x

Option 1: 90% reduction in NO_x limits by 2031, with longer useful life and warranty periods

Option 2: 75% reduction in NO_x , less stringent useful life and warranty

Both Options:

- Endless ZEV crediting
- Inducement provisions that could lead to higher in-use emissions

GHGs

- Tightens 2027 standards by 1.5% for school and transit buses, delivery vans, and short-haul tractors
- Maintains ZEV supercrediting until 2028 (4.5x for a BEV)
- Requests comment on setting a ZEV requirement

ICCT's recommendations

NO_x

- Dismiss Option 2
- Strengthen Option 1, including:
 - $\circ~$ 90% reduction in NO_x limits by 2027
 - Strengthen SCR inducements, including lowering speed derates and removing overrides of disincentives
 - $\circ~$ Do not allow ZEV crediting

GHGs

- Set minimum ZEV production requirements to achieve 20%, 30% and 40% ZEV sales in 2027, 2028 and 2029
- Preserve the original Phase II stringency for ICE vehicles
- Phase-out ZEV supercrediting towards GHGs in 2024 or as soon as feasible

Updated NO_x standards are technically feasible

Various technology pathways can achieve 20 mg/hp-hr NO_x emissions

DICCT

Updated NO_x standards are economically feasible

Source: Various. Summary: ICCT 2021, <u>https://theicct.org/what-will-it-really-cost-to-build-the-next-generation-of-low-nox-trucks/</u>, ICCT 2021, <u>https://theicct.org/publication/air-quality-and-health-impacts-of-heavy-duty-vehicles-in-g20-economies/</u>

ZEV crediting would allow OEMs to produce higher emitting diesel engines

Share of diesel engines that can be certified at the FEL cap by model year and scenario under Option 1

Family emission limit (FEL) cap: maximum limit an engine can be certified to, even if credits would allow it to go higher. For most HDVs, the EPA proposed limit is 150 mg/hp-hr in 2027 and 50 mg/hp-hr in 2031.

Stricter NO_x regulations reduce HDV NO_x emissions

Cumulative tailpipe NO, emissions by scenario, 2027-2050

Choosing Option 1 over Option 2 avoids nearly 1 million tonnes of NO_x emissions between 2027 and 2050

Not considered:

- Inducements
- In-use testing
- New test cycles

Stricter NO_x regulations reduce HDV NO_x emissions

Cumulative tailpipe NO, emissions by scenario, 2027–2050

accelerated ZEV deployment.

EPA 2010 standards are currently in effect.

EPA's proposed Option 1 would allow ZEV crediting.

Federal omnibus assumes full alignment with California's Omnibus rule starting in 2027.

Key recommendations on NO_x standards

- 1. We encourage EPA to finalize NO_x engine standards this year
- 2. We recommend EPA adopt a strengthened Option 1 to fully align with a 90% NO_x reduction in model year 2027
- 3. We recommend EPA eliminate ZEV crediting towards NO_x engine standard compliance
- 4. We recommend EPA strengthen proposed SCR inducement provisions

Accelerating ZEV uptake prior to 2030 is crucial to put the sector on a pathway compatible with 2°C

Cumulative well-to-wheel CO₂ emissions by scenario, 2027–2050

EPA's proposed revisions to the GHG standard will reduce cumulative class 4-8 vehicle CO_2 emissions by **only 0.4%** from 2027–2050.

Accelerating ZEV uptake prior to 2030 is crucial to put the sector on a pathway compatible with 2°C

Cumulative well-to-wheel CO, emissions by scenario, 2027–2050

Incorporating ICCT's recommendations to preserve ICE stringency could **more than double** the benefits of expected actions by MOU states.

Accelerating ZEV uptake prior to 2030 is crucial to put the sector on a pathway compatible with 2°C

Cumulative well-to-wheel CO, emissions by scenario, 2027–2050

A 3-year lag in ACT stringency reduces CO_2 benefits by 1.2 Gt and is not compatible with 2°C. More is needed for compatibility with limiting warming to 1.5°C.

Under EPA's proposal, model year 2027 ICE vehicles could emit more than in model year 2017

Efficiency improvements required for ICE vehicles by ZEV pathway and GHG standard.

ZEV pathway	GHG standard	Rigid trucks and buses	Tractor trucks	Overall	
No ZEV deployment	Current	14%	22%	15%	
6-state ACT adoption	Current	3%	0% 2%)
	Proposal	4%	1%	3%	}
MOU states adopt ACT	Proposal	-1%	-19%	-3%	J
	Proposal, no ZEV supercredits	11%	14%	11%	
	ICCT	1 / 0/	009/	150/	
Any ZEV pathway	ICCT	14%	22%	15%	

if OEMs backslide on ICE efficiency

Current: EPA maintains the original Phase II GHG standards.

Proposal: EPA tightens the Phase II GHG standards by 1.5% for certain segments, as proposed in the NPRM. **ICCT:** EPA removes ZEV crediting and requires all ICE to meet the original Phase II GHG standards.

Key recommendations on GHG standards

- 1. We encourage EPA to finalize GHG standards this year
- 2. We recommend EPA set minimum ZEV production requirements of 20%, 30%, and 40% in 2027, 2028 and 2029
- 3. We recommend EPA preserve the original Phase II stringency for ICE vehicles
- 4. We recommend EPA **phase-out ZEV supercrediting towards GHGs** in 2024 or as soon as feasible

Questions?

Additional slides

EPA Option 1 vs. California Omnibus

NO_x Limits:

2027: Option 1 *weaker* than Omnibus for most vehicle categories and the same for heavy-heavy duty diesel. 2031: Option 1 *same* as Omnibus for all vehicle categories.

Useful life:

Same as Omnibus for all categories. Intermediate useful life for heavy-heavy-duty diesel starts in 2031 instead of 2027 (*weaker* than Omnibus).

ZEV Crediting:

Option 1 weaker than Omnibus on diesel engines because it allows ZEV crediting with no sunset date.

Inducements:*

Option 1 weaker on inducement provisions than Omnibus.

In-Use Testing:*

Option 1 keeps Not-to-Exceed test procedure, which is *weaker* than Omnibus 3-Bin Moving Average Window.

*Not modeled in our analysis

Lifetime greenhouse gas emissions of model year 2027 vehicles by scenario relative to current Phase II GHG standards

ON CLEAN TRANSPORTATION

Summary of literature on ZEV market details

	Segment	Share of HDV sales	Year of TCO parity between ZEVs and ICEVs	Upfront cost ratio of ZEVs to ICEVs in 2027	Market readiness	
Fast	Transit buses primarily class 8	1.3%	Before 2025	1-1.1	Mature market, depot charging	
	Refuse trucks primarily class 8	0.7%	Before 2025	1.1-1.15	Small-scale commercialization, depot charging	
	Short-haul rigid trucks class 4-7 (e.g., delivery, utility)	40.1%	2022 (Class 4) -2027 (Class 7)	0.9-1.5	Small-scale commercialization, depot charging	
Medium	Short-haul rigid trucks class 8 (e.g., delivery, utility)	15.7%	2028	1.45-6	Approaching commercialization, depot charging	
	Short-haul tractors primarily class 8 (e.g., drayage, beverage)	8.6%	2025-2033	1.3-1.8	Approaching commercialization, depot charging	
	School buses primarily class 6-7	4.9%	2026	1.25	Mature market, depot charging, some limitations in rural areas	
	Other buses (e.g. shuttle buses, regional transit)	3.3%	2027-2030	1-1.2	Mixed charging requirements	
Slow	Long-haul rigid trucks class 4-8	2.5%	After 2030		Mixed charging requirements	
	Long-haul tractors primarily class 8	15.0%	No Consensus	2-2.4	Approaching range-limited commercialization, requires significant publicly accessible charging	

Not shown: Motorhomes (8.0% of sales).

Sources: ANL, ANL'S BEAN tool, NREL (2021), NREL (2022), EDF, CARB, ZEV Alliance