Benefits of U.S. state adoption of key heavy-duty engine and vehicle policies

Ray Minjares, Director, ICCT Heavy-Duty Vehicles Program Jeff Houk, Senior Analyst, Sonoma Technology, Inc. 12 October 2022 Webinar

Published 27 Sep 2022: Benefits of adopting California MHD regulations

Summary Fact Sheet

FACT SHEET UNITED STATES

SEPTEMBER 2022

Benefits of adopting key mediumand heavy-duty vehicle emissions control policies in U.S. states

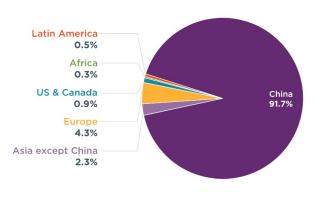
Medium- and heavy-duty (M/HD) vehicles, including trucks and buss, emit climatewarming oreehouse gares (GHS) as well as air pollutants that are harmful to human health. In July 2020, fifteen states and the District of Columbia. together representing roughly 35% of the US. HVHD market, signed a Memoradum of Inderstrainding (MOU) to work together on a transition to M/HD zero emission vehicles (ZZVy).¹ Zero-emission vehicles are powered by electric motors and not internation combustion engines. The signatories of this Multi-State MOU share a goal of 30% M/HD ZEV sales by 2030 and 100% ZEV sales in olater than 2050. Many of these same states are pursuing new engine standards for cliesel engines to address inequities in exposure to nitrogen oucles and ozone politon. The combined efforts of there US. states are accelerating the national transition toward the cleanest combustion engines and zero-emission M/ H J0 vehicles.

Fact sheets for 16 states + DC Spreadsheets for 18 states + DC

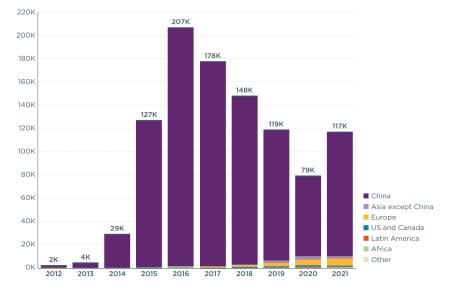
September 2022

	2031	15.360	15,140	14,580	14,480		2031	326	303		
	2032	15.060	14,750	14,120	13.970		2032	292	287		
	2033	14,750	14,350	13.670	13,460		2033	277	272		
	2034	14,450	13,960	13.210	12,950		2034	263	255		
-43	6 2035	14,150	13,560	12,750	12,440		2035	249	241		
	2036	14.120	13,430	12,550	12,150		2036	245	235		
	2037	14.090	13,300	12,350	11.940		2037	240	231		
	2038	14,050	13,170	12,150	11,650		2038	236	225		
	2039	14,020	13,040	11,950	11,440		2039	231	220		
	2040	13,990	12,910	11,750	11,150	-55%	2040	227	215	-73%	
	2041	14,140	12,960	11,770	11,150		2041	229	216		
	2042	14,290	13,010	11,790	11,110		2042	231	216		
	2043	14,450	13,050	11,820	11,070		2043	233	217		
	2044	14,600	13,100	11,840	11,030		2044	235	217		
	2045	14,750	13,150	11,860	10,990		2045	237	218		
	2046	14,960	13,260	11,960	11,030		2046	240	220		
	2047	15,170	13,370	12,070	11,080		2047	242	221		
	2048	15,370	13,490	12,170	11,120		2048	245	223		
	2049	15,580	13,600	12,280	11,170		2049	247	224		
12	% 2050	15,790	13,710	12,380	11,210		2050	250	226	-6%	
	Total	507,220	484,110	461,370	448,850		Total	10,721	10,445		
	Change 2020	-37%	-45%	-52%	-55%		Change 2020	-69%	-72%		
				cle Tank-to W				n- and Heavy-Duty el PM2.5 Emission			
23,000				cle Tank-to W ns per year), 3			Whe		ns by Scenario		
25,500 23,500 15,500							Who (sl 200 200	el PM2.5 Emission	ns by Scenario		
21,000 23,000 33,000 23,000							Whe (s) 300 700 500 400 300	el PM2.5 Emission	ns by Scenario		
25,000 23,000 33,000 33,000 5,000	Emissions	by Scenario	> (short to	ns per year), ;	1020-2050		Whe (57 700 700 600 500 400	el PM2.5 Emission	ns by Scenario		
25,000 23,000 33,000 33,000 5,000	Emissions	by Scenario	5 (short to	ns per year), ;	2020-2050	200	Whe (sl 200 200 200 200 200 200 200 200	el PM2.5 Emission sort tons per year)	ns by Scenario		
25,000 23,000 33,000 33,000 5,000	Emissions	by Scenario	> (short to	ns per year), ;	2020-2050	0002	Whe (sl 200 200 200 200 200 200 200 200	el PM2.5 Emission sort tons per year)	s by Scenario , 2020-2050		

https://theicct.org/benefits-ca-multi-state-reg-data/


Outline

- 1. Overview
- 2. Approach to benefits modeling
- 3. Results
- 4. Final thoughts



Global HD ZEV sales trends

HD ZEV sales market share by region, 2019-2021

Annual HD ZEV sales by region through 2021

Buysse, Claire. 2021. "Zero-Emission Bus and Truck Market in the United States and Canada: A 2021 Update." Washington, DC: International Council on Clean Transportation. <u>https://theicct.org/publication/update-ze-truck-bus-market-us-can-sept22/</u>.

Zero-emission heavy-duty sales in North America

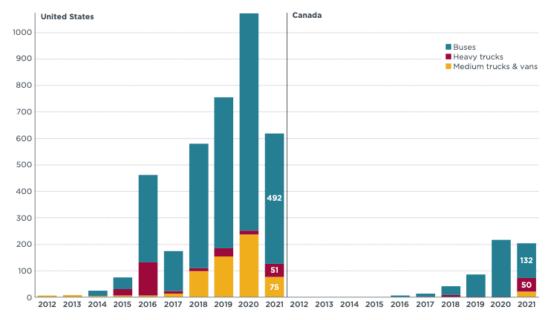


Figure 3. Zero-emission heavy-duty vehicle sales in North America

https://theicct.org/publication/update-ze-truck-bus-market-us-can-sept22/

Federal policy on HD ZEV standards is evolving

Scenarios	2027	2028	2029	2030
Baseline (pre-Inflation Reduction Act)	3%	5%	6%	8%
With EPA Phase II proposed revisions (28 Mar 2022)	3%	5%	6%	8%
Baseline with Inflation Reduction Act incentives	TBD	TBD	TBD	TBD
New EPA supplemental Phase II proposal	TBD	TBD	TBD	TBD
ICCT recommendation (16 May 2022) ¹	20%	30%	40%	50%

¹ https://www.regulations.gov/comment/EPA-HQ-OAR-2019-0055-1211

² https://www.volvogroup.com/en/news-and-media/news/2022/jan/news-4158927.html

³https://www.volvotrucks.com/en-en/news-stories/press-releases/2022/sep/New-report-high-pressure-on-the-transport-industry-to-shift-to-electric.html

2022 Multi-state MHD ZEV Action Plan

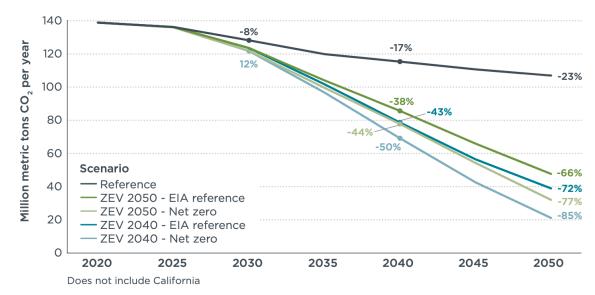
States should consider adopting:

- The ACT regulation
- Fleet purchase requirements
- California's HD omnibus regulation

This Action Plan was developed by the following jurisdictions* through the Multi-State ZEV Task Force facilitated by the Northeast States for Coordinated Air Use Management (NESCAUM):

Massachusetts Nevada New Jersey New York North Carolina Oregon Pennsylvania Rhode Island Vermont Virginia Washington District of Columbia Quebec

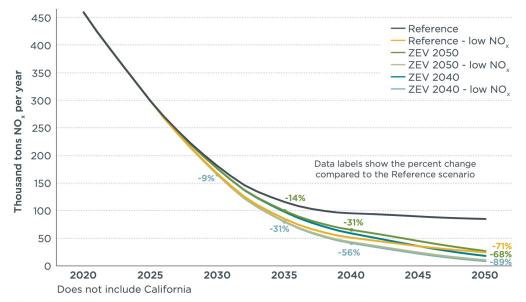
TASK FORCE MULTI-STATE MEDIUM- AND HEAVY-DUTY TASK FORCE ZERO-EMISSION VEHICLE ACTION PLAN A POLICY FRAMEWORK TO ELIMINATE HARMFUL TRUCK AND BUS EMISSIONS



SICCT

https://www.nescaum.org/documents/multi-state-medium-and-heavy-duty-zev-action-plan.pdf

CO₂ Benefits of Multi-State MOU ACT adoption


Figure 6. Comparison of medium- and heavy-duty vehicle fuel lifecycle CO_2 emissions across scenarios. Data labels show the percent change compared to 2020.

CCT https://t

ON CLEAN TRANSPORTATION

https://theicct.org/publication/md-hd-mou-benefits-apr22/

NO_x benefits of multi-state HDV Omnibus adoption

Figure 7. Comparison of medium- and heavy-duty vehicle tailpipe NO_x emissions across scenarios. Data labels show the percent change compared to the Reference scenario.

https://theicct.org/publication/md-hd-mou-benefits-apr22/

THE INTERNATIONAL COUNCI

ON CLEAN TRANSPORTATION

November 2021: Benefits of adopting California MHD regulations

Adopted ACT in 2021

• NY, NJ, MA, WA, OR

Adopted HDV Omnibus in 2021

• MA, OR

Adopted CA Phase II GHG in 2021

• MA

Table 1. Cumulative emissions avoided with 2025 implementation of ACT, HDV Omnibus, and CAPhase II GHG tractor-trailer standards (All EV Scenario)

	2020-2040				2020-2050	
State	NO _x	PM _{2.5}	WTW CO ₂ e	NO _x	PM _{2.5}	WTW CO ₂ e
Colorado	32,600	213	16.24	88,460	546	53.52
Connecticut	7,320	41	3.51	20,410	126	9.91
D.C.	1,640	11	0.37	4,600	34	1.46
Massachusetts	26,950	196	18.63	71,960	549	54.49
Maryland	36,480	233	5.73	99,760	613	13.51
Maine	10,410	66	6.38	28,770	182	18.79
North Carolina	52,780	306	12.29	142,620	790	31.14
New Jersey	45,220	303	32.45	125,380	844	95.95
Oregon	45,910	321	28.98	125,690	829	92.42
Pennsylvania	84,480	479	14.64	231,140	1,328	34.38
Rhode Island	4,740	25	1.96	13,080	76	5.59
Vermont	3,010	16	1.31	8,190	44	3.70
Washington	44,080	285	15.70	122,350	794	44.03

https://theicct.org/publication/benefits-of-adopting-california-medium-and-heavy-duty-vehicle-regulations-under-clean-air-act-section-177/

September 2022: Benefits of adopting California MHD regulations

GOAL Estimate annual and cumulative NOx, PM, and WTW CO₂e benefits of adoption of

- Advanced Clean Trucks Rule
- HDV Omnibus Rule
- 100% HD ZEV sales in 2040
 requirement
- CA GHG Phase II (NY-VT only)

Table 1. Emissions reduction potential of adopting remaining key M/HD policies in U.S. states

		2020-2050	
State	NO _x (U.S. tons)	PM _{2.5} (U.S. tons)	WTW CO ₂ e (million metric tons)
Colorado	119,263	967	77.06
Connecticut	25,148	194	20.21
D.C.	5,276	50	2.71
Delaware	22,519	157	16.37
Illinois	252,240	1,885	187.77
Maine	34,786	266	28.59
Maryland	120,920	926	60.33
Nevada	46,991	328	19.69
New Jersey	60,490	373	26.60
New Mexico	99,288	671	74.14
New York	72,840	Net retent	9.96
North Carolina	192,628	1,389	149.48
Pennsylvania	282,147	2,079	129.68
Rhode Island	15,900	119	11.49
Vermont	9,880	74	8.08
Virginia	130,507	884	106.78
Washington	61,030	354	25.57

https://theicct.org/benefits-ca-multi-state-reg-data/ https://theicct.org/publication/state-level-hdv-emissions-reg-fs-sep22/

Modeling set-up and results

Modeling Set-Up

- EPA's MOVES3 model (released Nov. 2020) used
- MOVES3 does not allow for direct modeling of heavy-duty EVs (only light-duty vehicle types can be electric in MOVES)
- ICCT and STI chose to run MOVES3 as-is and apply postprocessing adjustments to account for these vehicles

MOVES Approach

- STI used MOVES at the County scale, similar to the way MOVES is used for regulatory purposes
- STI modeled the representative counties in each state that are used to generate the National Emissions Inventory (NEI) (2017 is the most recent complete update), and used NEI apportionment factors to calculate statewide inventories

MOVES Inputs

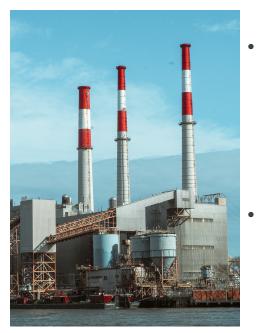
- STI used MOVES inputs for the representative counties from the 2017 NEI as a starting point
 - Some states provided updated input data, such as vehicle miles travelled, vehicle population, and/or vehicle age distributions
 - MOVES default growth rates used to project VMT and vehicle population to future years, unless states provided growth rates
 - MOVES default runs were also used to develop interpolation factors for interim years

Post-Processing

- Adjustment factors were applied to MOVES output:
 - ACT: CARB projections of EV market penetration mapped to MOVES vehicle types; MOVES emissions reduced proportionally
 - GHG Phase 2 Trailers: ICCT estimates of emissions impacts used to *increase* MOVES CO₂ emissions
 - Low-NOx Omnibus: CARB emissions inventory projections used to develop NO_x reduction factors

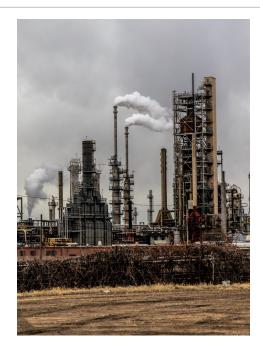
Affected MOVES Regulatory Classes

EPA Regulatory Class Codes	Description
41	Class 2b and 3 Trucks (8,500 lbs < GVWR <= 14,000 lbs)
42	Class 4 and 5 Trucks (14,000 lbs < GVWR <= 19,500 lbs)
46	Class 6 and 7 Trucks (19,500 lbs < GVWR <= 33,000 lbs)
47	Class 8a and 8b Trucks (GVWR > 33,000 lbs)
48	Urban Transit Bus



Post-Processing

Торіс	Description	EPA Regulatory Classes Affected	Pollutants Affected
GHG Phase 2 Trailer provisions	Adjustment to remove the benefit of the trailer component of the HDV Phase 2 GHG rule	46, 47	CO ₂ (emissions increase)
Advanced Clean Trucks program	Adjustment to reflect phased introduction of electric HDVs into the fleet. Also includes use of GREET emissions factors to calculate resulting increase in grid emissions.	41, 42, 46, 47	All (emissions decrease)
Low-NO _x Omnibus program	Adjustment to reflect ARB's proposed Low-NO _x Omnibus rule	42, 46, 47	NO _x (emissions decrease)



Well-to-Tank Emissions

icct

- Energy consumption for the EV portion of the fleet used to calculate:
 - Utility emissions increase from EV charging
 - Refinery emissions decrease from fuel
 usage reductions
- Used emissions factors from DOE's GREET model, with future factors adjusted for anticipated state renewable energy projections

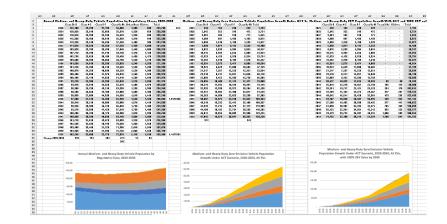
ACT sub-scenarios: "ACT EVs"

- For the "ACT EVs" scenarios, STI fully incorporated CARB's assumptions regarding EV fleet penetration under ACT:
 - EVs produced to meet GHG Phase 2 standards, which don't represent incremental new EVs under ACT (roughly 20%)
 - New vehicles are purchased out of state but registered in CA (10-15%)
 - EVs purchased in CA that migrate out of state over time
 - 22.5% for light HD
 - Up to 33% for medium HD
 - Up to 66% for HD combination trucks

ACT sub-scenarios: "All EVs"

- For the "All EVs" scenarios, STI incorporated CARB's assumption regarding out-of-state purchases, but not the GHG Phase 2 "carve-out" or out-of-state migration
- "All EVs" projections better represent the full population of EVs within a state

Impact of CARB assumptions on ACT EV sales


Relative outcomes per 1000 vehicles sold in 2035:

Calendar year 2035 (ACT program reaches steady state)	Total new model year vehicles registered	New model year vehicles purchased in- state	EVs sold under either ACT or GHG Phase 2	Incremental EVs due to ACT program only	MY2035 EVs (ACT or GHG Phase 2) remaining in-state after 5 years (in 2040)
Regulatory class 41	1000	1000	550	370	550
Regulatory classes 42 & 46	1000	897	654	475	564
Regulatory class 47	1000	880	421	252	295

Results

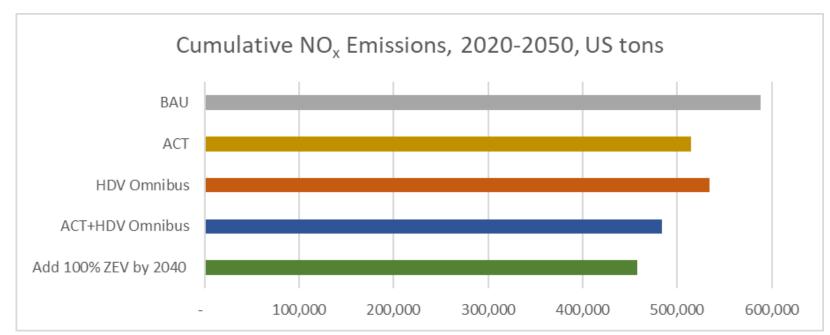
- Results presented in a spreadsheet including--
 - Unadjusted MOVES output
 - Emissions estimates for the scenarios; GREET upstream emissions for the ACT scenarios
 - Estimated EV fleet penetration under ACT
 - All post-processing adjustment factors

2021 Analyses

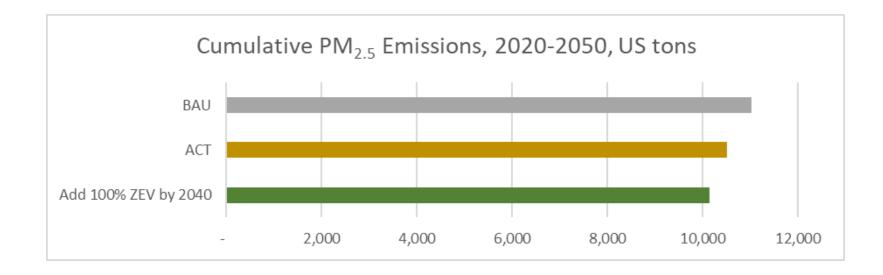
- Projected emissions for 14 states: Colorado, Connecticut, the District of Columbia, Maine, Maryland, Massachusetts, New Jersey, New York, North Carolina, Oregon, Pennsylvania, Rhode Island, Vermont, Washington
- All three programs modeled (ACT, Omnibus, and GHG Phase 2 trailers)
- Calculated-
 - NO_x, PM_{2.5}, CO₂e emissions by year;
 - ZEV sales, population and VMT by year;
 - Cumulative change in NO_x , $PM_{2.5}$, and CO_2e emissions, 2020-2050

2022 Updates

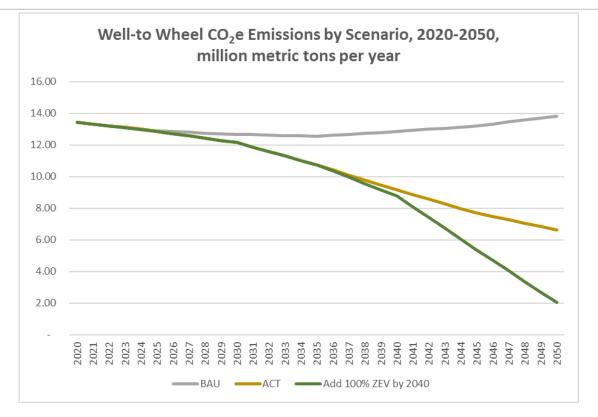
- Added Delaware, Illinois, Nevada, New Mexico and Virginia
- GHG Phase 2 trailer scenario removed for most states; added new scenario with 100% ZEV sales by 2040
- Re-analyzed states that had already adopted ACT (with ACT as their new BAU scenario)
- Re-modeled Colorado and North Carolina with new MOVES inputs
- Added ZEV efficiency factors to the calculation of grid emissions, and updated with GREET2021
- Pending: modeling of British Columbia and Quebec


Example Results (Virginia): Cumulative Pollutant Reductions

Program	Cumulative Emissions Reduction				
	NO _x (U.S. tons)	PM _{2.5} (U.S. tons)	CO ₂ e (MMT*)		
ACT	73,170	524	79.40		
HDV omnibus	53,220	N/A	N/A		
ACT + HDV omnibus	104,200	524	79.40		
ACT + HDV omnibus + 100% HD ZEV sales in 2040	130,507	884	106.78		


*million metric tons

Example Results (Virginia): NO_x



Example Results (Virginia): PM_{2.5}

Example Results (Virginia): CO₂e

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

Example Results (Virginia): ZEV Population

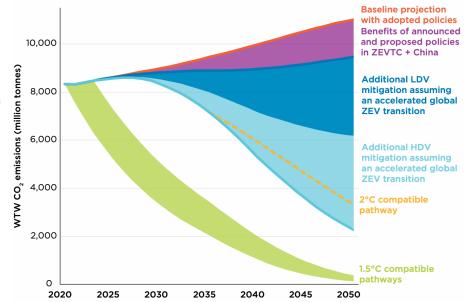
Year	Effect of 100% ZEV sales requirement in MY2040 on M/HD vehicle population, by fuel type				
	Internal combustion engine vehicles	Zero emission vehicles	Total		
2025	458,010	2,380	460,390		
2030	431,772	27,418	459,190		
2035	392,735	82,585	475,320		
2040**	333,479	160,391	493,870		
2045	239,895	278,565	518,460		
2050	159,244	388,916	548,160		

**100% ZEV sales begin

Differences between states

Several factors contribute to differing trends among states, including:

- VMT and vehicle population growth rates
- Vehicle age distribution (rate of fleet turnover)
- Relative population of different HD vehicle types
- Renewable energy policies (WTW CO₂e)



Final thoughts

Final Thoughts: The Climate Imperative

GOALS1. At least 45% HD ZEV sales in 20302. 100% HD ZEV sales no later than 2040

Figure 1. Global WTW CO_2 emissions from cars, vans, trucks, and buses compared to 1.5°C and 2°C compatible emissions pathways. Source: Sen and Miller (2022).

Governments with targets toward phasing out sales of internal combustion engine trucks by a certain date (Status: Through June 2022)

Government commitments to HD ZEVs

DICCT

United Kingdom 2035 New heavy-duty trucks (< 26 tonnes) 100% Zero-emission 2040 New heavy-duty trucks (> 26 tonnes) 100% Zero-emission

Austria

2030 New heavy-duty trucks (< 18 tonnes) 100% zero-emission-2035 New heavy-dutytrucks (> 18 tonnes) 100% zero-emission

> Cape Verde 2035 New mediumand heavy-duty trucks 100% electric 2050 Medium- and heavy-duty truck fleet 100% electric

Hainan (China)
 2019 New sanitation
 vehicles 50% electric

Pakistan 2040 New heavy-duty trucks 90% electric

Governments with official targets
 U.S. states Memorandum of Understanding*
 Global Memorandum of Understanding (MoU)*

Norway

2030 New trucks

50% zero-emission

Global Memorandum of Understanding (MoU) Austria, Canada, Chile, Denmark, Finland, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Scotland, Switzerland, Turkey, United Kingdom, Uruguay, Wales **2030** New medium- and heavy-duty vehicles 30% zero-emission **2040** New medium- and heavy-duty vehicles 100% zero-emission

Note: Governments with an at least 40% new truck sales target.

Vermont and Washington and the District of Columbia

2030 New medium- and heavy-duty vehicles 30% zero-emission

2050 New medium- and heavy-duty vehicles 100% zero-emission

U.S. states Memorandum of Understanding (MoU)

California, Colorado, Connecticut, Hawaii, Maine, Maryland, Massachusetts,

New Jersey, New York, North Carolina, Oregon, Pennsylvania, Rhode Island,

* Not necessarily yet reflected in an official national/state policy document such as a climate or transport strategy/plan, in a law, or in a similar framework.

https://zevtc.org/tracking-progress/heavy-duty-vehicle-map/

California (United States)

2035 New rigid trucks 75%

New York (United States)

trucks 100% zero-emission

trucks 100% zero-emission

Chile

zero-emission

zero-emission

2035 New tractor trucks 40% zero-emission or near zero-emission 2045 Medium- and heavy-duty vehicle fleet 100% zero-emission

zero-emission or near zero-emission

2045 New medium- and heavy-duty

2035 New mobile machinery used in mining, forestry, agricultural, and construction (> 560 kW) 100%

2040 New mobile machinery used in mining, forestry, agricultural, and construction (> 19 kW) 100%

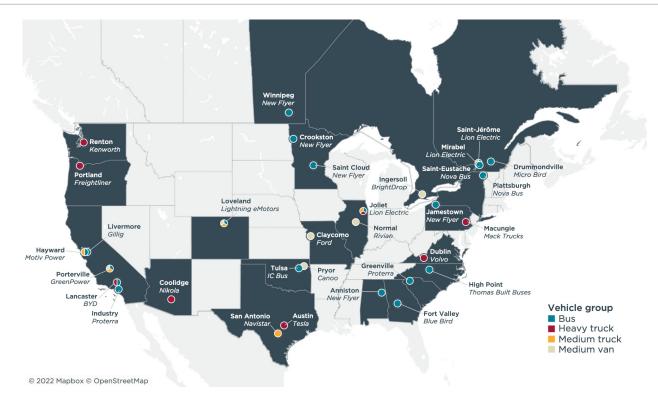
2045 New medium- and heavy-duty

HD ZEV Manufacturer Commitments

Manufacturer	Commitment
Daimler Trucks ¹⁵	100% sales of CO_2 -neutral vehicles in driving operation (tank-to-wheel) in Europe, North America and Japan by 2039
Ford ¹⁶	67% zero-emission commercial vehicle sales by 2030 in Europe, 100% by 2035
Navistar ¹⁷	50% zero-emission sales by 2030, 100% by 2040
Traton Group ¹⁸	50% zero-emission sales of Scania trucks by 2030, 100% by 2040 60% zero-emission sales of MAN delivery trucks by 2030 40% zero-emission sales of MAN long-haul trucks by 2030
Volvo Trucks ¹⁹	50% sales of electric trucks by 2030 globally, 70% in Europe 100% fossil fuel free vehicles by 2040

15 "Environment," Daimler Trucks, accessed Sept 27, 2022, https://www.daimlertruck.com/sustainability/e-environment/

16 Ford Motor Company, "Helping Build a Better World: Integrated Sustainability and Financial Report 2022" (Dearborn, MI, n.d.), https://corporate.ford.com/content/dam/corporate/us/enus/documents/reports/integrated-sustainability-and-financial-report-2022.pdf.


17 McDaniel, Jason, "Navistar launches new truck with its 'last' internal combustion engine", Bulk Transporter, August 16, 2022, https://www.bulktransporter.com/equipment/trucks/article/21248846/navistar-launches-new-truck-last-ice-powertrain.

18 Traton Group, "Traton Group Boosts Investment in Electric Mobility"; Matthias Rathmann, "CEO Levin zur Antriebswende: Warum Traton auf Batterien setzt," Eurotransport, September 7, 2022,

https://www.eurotransport.de/artikel/ceo-levin-zur-antriebswende-warum-traton-auf-batterien-setzt-11213350.html.

19 Volvo Trucks, "New report - High pressure on the transport industry to shift to electric," accessed October 11, 2022, https://www.volvotrucks.com/en-en/news-stories/press-releases/2022/sep/New-report-high-pressure-on-the-transport-industry-to-shift-to-electric.html; "Towards Fossil Free Transport," Volvo, accessed September 27, 2022, https://www.volvogroup.com/en/future-of-transportation/going-fossil-free.html.

HD ZEV production sites in North America

https://theicct.org/publication/update-ze-truck-bus-market-us-can-sept22/

Published work

Summary fact sheet

https://theicct.org/benefits-ca-multi-state-reg-data/

Individual state (plus DC) fact sheets and data spreadsheets

https://theicct.org/benefits-ca-multi-state-reg-data/

Original methods paper

https://theicct.org/publication/benefits-of-state-level-adoption-of-california-medium-and-heavy-duty-vehicle-regulations/

Previous work published 1 November 2021

https://theicct.org/publication/state-level-hdv-emissions-reg-fs-dec21/

ray@theicct.org

