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SUMMARY
This study reviews six life-cycle greenhouse gas (GHG) emission assessments of 
passenger cars in India, focusing on three powertrain types: internal combustion engine 
vehicles (ICEVs), hybrid electric vehicles (HEVs), and battery electric vehicles (BEVs). It 
finds that key differences in assumptions—especially concerning grid carbon intensity, 
test versus real-world energy use, and fuel type—are primary drivers of variation in 
reported GHG emissions. A statistical bootstrapping analysis showed that these three 
factors alone accounted for nearly 75% of the variance in life-cycle emission estimates 
across studies.

Based on these findings, researchers undertaking future assessments of life-cycle 
emissions from passenger cars in India could consider using dynamic grid carbon 
intensity values, accounting for hybrid vehicles, applying real-world energy 
consumption adjustments, and refining assumptions about biofuel blending and 
land-use change. A harmonized approach to life-cycle assessments can better support 
policymaking on fuel efficiency standards, zero-emission vehicle mandates, and 
incentives for cleaner technologies.

INTRODUCTION
In its Nationally Determined Contribution under the Paris Agreement, India pledged to 
achieve net-zero GHG emissions by 2070. The transportation sector is responsible for 
nearly 14% of India’s total GHG emissions and is the fastest-growing sector in India in 
terms of annual GHG emissions (Kumar et al., 2022).

Approximately 3.9 million passenger cars were sold in India in fiscal year (FY) 2022–23, 
positioning the country as the third-largest passenger vehicle market after China and 
the United States. Despite the continued dominance of fossil fuel-powered vehicles, 
BEVs have begun to gain traction: as of 2023, the BEV sales share in India stood at 
2% (Deo & Kaur, 2024). Battery electric vehicles will be critical to decarbonizing the 
transport sector; when powered by renewable energy, BEVs can significantly reduce 
the life-cycle emissions from passenger transport (Abdul-Manan et al., 2022). 

Recent studies have assessed the life-cycle emissions of passenger cars of various 
powertrains. However, these studies have used varying assumptions (e.g., regarding 
emissions from battery production, biofuels, and electricity generation). This 
paper examines the conflicting findings in the existing literature on the life-cycle 
GHG emissions of passenger cars in India in order to provide a clearer picture for 
policymakers as they determine how best to pursue India’s decarbonization goals. 

We review six studies on the life-cycle emissions of passenger vehicles in India and 
analyze how differences in variables and assumptions contribute to variation in GHG 
emissions estimates. We explore how estimates of the life-cycle GHGs of BEV, HEV, 
and ICEV passenger cars in India vary across the selected studies, and identify which 
assumptions pertaining to the vehicle cycle, fuel cycle, and electricity grid might 
explain convergence or divergence in GHG estimates.

We begin by presenting the six studies selected for this analysis and describing our 
methodology. We next present our results in two ways: first by comparing descriptive 
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statistics of key variables included in the studies, and subsequently by assessing the 
relative importance of these variables in explaining the studies’ differing findings. We 
close by offering some concluding thoughts on policy implications and highlighting 
potential areas of future work.   

STUDY SELECTION AND DESCRIPTIONS
A life-cycle assessment (LCA) is used to estimate emissions over a vehicle’s entire 
lifetime. This includes both fuel cycle emissions—encompassing well-to-tank (WTT) 
emissions from fuel and electricity production and tank-to-wheel (TTW) emissions 
from consumption—and vehicle cycle emissions produced in vehicle manufacturing, 
operation, and maintenance. It also includes emissions associated with the end of a 
vehicle’s useful life, such as those from recycling and disposal. 

Following an extensive literature review, six studies of the life-cycle GHG emissions 
of passenger cars in India were selected for analysis based on their relevance to the 
Indian passenger car context. Table 1 gives a brief description of these studies, outlining 
the scope of emissions assessed and the functional unit of emissions analyzed. The 
functional units varied across studies, with most reporting emissions in grams or 
kilograms of CO2-equivalent (CO2e) per vehicle kilometer while Gadepalli et al. (2023) 
also assessed CO2e per passenger kilometer.



3 ICCT WORKING PAPER  |  REVIEW OF GREENHOUSE GAS LIFE-CYCLE ASSESSMENTS OF PASSENGER CARS IN INDIA

Table 1 
Summary of the six studies of passenger vehicle emissions considered in this analysis 

Study Description
Scope of GHG emissions 

considered for LCA Functional unit

Electrifying passenger road transport in 
India requires near-term electricity grid 
decarbonization (Abdul-Manan et al., 2022)

Assessment of the impact 
of grid decarbonization on 
BEV emissions in India

Fuel and vehicle cycle g CO2e per vehicle km 

A global comparison of the life-cycle 
greenhouse gas emissions of combustion 
engine and electric passenger cars (Bieker, 
2021)

Analysis of GHG emissions 
from BEVs and ICEVs 
globally, with a chapter on 
India 

Fuel and vehicle cycle, 
indirect land-use change 
emissions from biofuel 
feedstocks, maintenance 

g CO2e per vehicle km 

Comparative life cycle GHG emission analysis 
of conventional and electric vehicles in India 
(Das, 2022)

India-specific study 
comparing ICEVs and BEVs

Fuel and vehicle cycle kg CO2 per vehicle km 

LCA and TCO analyses of BEVs, HEVs, and 
ICEs (Agarwal, 2023)

India-specific comparison 
of the cost and emissions of 
BEVs, HEVs, and ICEVs

Fuel and vehicle cycle
g CO2e per km and 
g CO2e per vehicle 
lifetime km

Life-cycle assessment of passenger transport: 
an Indian case study (Gadepalli et al., 2023)

India-specific case study-
based LCA on different 
transport modes

Fuel and vehicle cycle
g CO2e per vehicle 
km and g CO2e per 
passenger km 

Well-to-wheel analysis of energy efficiency 
& CO2 emissions for hybrids & EVs in India: 
current trends & forecasting for 2030 (Nadola 
et al., 2023)

India-specific study on 
energy efficiency and CO2 
emissions

Fuel and vehicle cycle g CO2 per vehicle km

Table 2 summarizes the range of life-cycle emissions estimated across the six studies 
for three vehicle classes in India. The studies analyzed life-cycle emissions across 
different powertrains, fuel types, and vehicle classes, highlighting significant variability 
based on the fuel and energy mix.

Table 2 
Minimum and maximum life-cycle emissions recorded across the six studies for different vehicle classes in India

Vehicle class Indicator Minimum Maximum

Hatchback

Life-cycle emissions  
(g CO2e/km) 131.5 257.2

Powertrain BEV ICE

Study Bieker (2021) Bieker (2021)

Remarks
Powered by electricity, based on India’s 
average power generation mix over 15 
years starting from 2021

Fuelled by a blend of compressed natural 
gas (CNG) and biogas, assuming 5% biogas 
share from 2030 and 10% share from 2040 

Sedan

Life-cycle emissions  
(g CO2e/km) 90.0 325.0

Powertrain BEV BEV

Study Nadola et al. (2023) Abdul-Manan et al. (2022)

Remarks
Powered by the electricity generation 
mix in 2030 from the Central Electricity 
Authority (CEA) optimistic scenario 

Powered by the FY 2018–19 electricity 
generation mix of the western regional grid 
in India

Sport utility 
vehicle (SUV)

Life-cycle emissions  
(g CO2e/km) 115.0 368.8

Powertrain BEV BEV

Study Abdul-Manan et al. (2022) Das (2022)

Remarks
Powered by the FY 2018–19 electricity 
generation mix of the northeastern regional 
grid in India

Powered by electricity from India’s FY 
2018–19 generation mix
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METHODOLOGY 
The methodology for this analysis consists of two parts: a descriptive statistics analysis 
and a statistical bootstrapping analysis. The descriptive statistics analysis provided a 
basis to draw comparisons across LCA variables observed across the studies, while the 
bootstrapping analysis assessed how variables contributed to the variance in results. 
For the methods used to calibrate emissions estimates from each study across each 
phase and sub-phase of the life-cycle system boundary, see Appendix A.

DESCRIPTIVE STATISTICS ANALYSIS
The descriptive statistics analysis focused on seven categories of variables, shown in 
Table 3, to understand differences and alignments across the studies. Where available, 
metrics were recorded from all six studies to ensure standardization and comparability. 

Table 3
Dependent and independent variables in the six studies

Type Category Variables

Dependent 
variable

Life-cycle GHG 
emissions • Life cycle emissions (g CO2e/km)

Independent 
variables

Energy consumption
• Test-cycle energy consumption (MJ/km)

• Real-world energy consumption adjustment 
factor (> 1.00)

Vehicle use

• Vehicle lifetime (years)

• Total vehicle kilometers traveled (km)

• Vehicle maintenance emissions (g CO2e/km)

• Annual mileage degradation over vehicle lifetime 
(km)

Fuels

• Biofuel blend share (%)

• Wheel-to-tank emissions, excluding indirect 
land-use change (g CO2e/MJ)

• Indirect land-use change emissions (g CO2e/MJ)

• Tank-to-wheel emissions (g CO2e/MJ)

Electricity mix

• Carbon intensity of electricity generation (g 
CO2e/kWh or g CO2e/MJ)

• Transmission and distribution loss factor (energy 
lost per energy input)

Battery production

• Battery capacity (kWh)

• Market share of battery chemistries deployed in 
Indian market (% of GW-hr deployed)

• Carbon intensity of battery production per unit 
of battery capacity, by battery chemistry and 
region of production (g CO2e/kWh)

Rest-of-vehicle 
production

• Kerb weight, excluding battery (kg)

• Carbon intensity of vehicle production excluding 
battery per unit of weight (g CO2e/kg)

We evaluated the estimated life-cycle emissions of vehicles of the same segment, 
powertrain, and fuel type, using a functional unit of GHG emissions per vehicle 
kilometer traveled (VKT) over the vehicle lifetime. Vehicles were classified 
into three segments—hatchbacks, sedans, and SUVs—to account for the distinct 
characteristics and operational profiles of each, which can significantly influence 
energy consumption and emissions. In terms of powertrains, we considered ICEVs, 
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HEVs, and BEVs. Among fuel types, we considered gasoline, diesel, electricity, and 
alternative fuels like CNG.  

The review captured variations in life-cycle GHG emissions across a wide range of 
scenarios arising from differing assumptions concerning the fuel and vehicle cycles. 
This granularity ensured that results were not generalized across vehicle types and 
technologies, providing actionable insights for policy and strategy development.1

We sourced data directly from the six studies to the extent possible; when data 
were not available, we consulted the sources cited in the study to retrieve the 
relevant information or assumptions. These included information from stakeholder 
engagements and other data from the International Energy Agency (IEA) World Energy 
Outlook 2021 (IEA, 2021) and CEA reports (CEA, 2024a), sales data from Segment Y 
(2024), and passenger car data from the Society of Indian Automobile Manufacturers 
(SIAM; SIAM, 2024). In some instances, when direct data were unavailable, back-
estimations were made using materials referenced in the reports. Attempts also were 
made to engage with the primary authors for clarifications and to address data gaps, 
though we did not receive responses from all authors.

BOOTSTRAPPING ANALYSIS
To assess how variables contributed to variance in results across the six studies, we 
used the random forest model. This machine learning algorithm constructs multiple 
decision trees during training and outputs the mode of classes (for classification tasks) 
or mean prediction (for regression tasks) of the individual trees (Breiman, 2001). Each 
individual tree is trained on a random subset of the data and variables by bootstrap 
sampling with replacement from the original dataset. After the individual decision trees 
are trained and each tree makes a prediction, the final prediction for regression tasks 
is the average of all the individual tree predictions. This approach allows the algorithm 
to handle complex, non-linear relationships in data, be relatively robust to outliers 
and noise, and provide variable importance rankings (Hastie et al., 2009). It was 
selected for our study due to its high predictive accuracy, applicability in multivariable 
regression, and ability to estimate variable importance (Genuer et al., 2010). 

To illustrate how different analysis methods might create uncertainty and to provide 
multiple perspectives on variable importance, we also applied three other widely used 
approaches: correlation analysis, linear regression, and perturbation analysis. Those 
results are presented in Appendix B.

The variables and input data used in the bootstrapping analysis came from the six LCA 
studies under consideration. Some of the variables were combined or removed to avoid 
colinear effects between variables and to decrease the complexity of the analysis. The 
variables used for the analysis are shown as in Table 4. These inputs do not consider 
Nadola et al. (2023), which did not provide data on key vehicle specifications, like 
lifetime VKT and kerb weight, required for input into the bootstrapping analysis. 
As the variables for the WTW emissions estimation might be disparate for different 
powertrains, two groups of inputs were considered: one including all powertrains, and 
one for just ICEVs and HEVs (i.e., excluding BEVs). 

1 We depended on the author(s) of each study to select vehicles with approximately comparable utility (e.g., 
in terms of seating, range, and engine power); we did not make adjustments ourselves.
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Table 4 
Variables used for the bootstrapping analysis 

Bootstrapping analysis variables Units

Dependent 
variable Life-cycle emissions g CO2e/km

Independent 
variables

Kerb weight kg

Test-cycle energy consumption MJ/km

Real-world energy consumption adjustment factor No unit (> 1.00)

Vehicle lifetime years

Total VKT km

Vehicle maintenance g CO2e/km

Annual mileage degradation over vehicle lifetime km 

Average biofuel blend share across vehicle lifetime % biofuel

WTT emissions of conventional fuel g CO2e/MJ

WTT emissions of biofuel mix (including ILUC) g CO2e/MJ

TTW emissions of conventional fuel g CO2e/MJ

Emissions due to generation of electricity g CO2e/kWh

Transmission and distribution losses %

Battery capacity kWh

Emissions intensity of battery kg CO2e/kWh battery

Battery replacement during vehicle lifetime Number

Note: The estimated WTT emissions of conventional fuel include any biofuel blending considered. Additionally, 
for reference, we separately analyzed the volumetric average of the vehicle’s lifetime WTT emissions based on 
the biofuel mix considered. 

RESULTS

DESCRIPTIVE STATISTICS ANALYSIS
In this section, we compare descriptive statistics of the LCA variables.

Life-cycle GHG emissions 
Table 5 summarizes the characteristics of the sample of life-cycle emissions estimates 
in the six studies assessed in this report. We analyzed results from 112 unique 
combinations of vehicle class (hatchback, sedan, and SUV), powertrain (ICEV, HEV, and 
BEV), and fuel or electricity mix assumed in the respective studies.

Table 5 
Sample characteristics of life-cycle emissions estimates

Vehicle segment Hatchbacks Sedans SUVs

Powertrain ICE HEV BEV ICE HEV BEV ICE HEV BEV

Sample size 4 0 2 17 9 33 9 8 28

Life-cycle 
emissions
(g CO2e/km)

Mean 235.1 N/A 146.8 207.7 157.6 211.4 228.9 189.4 226.5

Median 235.0 N/A 146.8 210.0 170.0 199.5 220.0 182.5 212.0

Min 213.0 N/A 131.5 122.0 92.0 90.0 175.0 145.0 115.0

Max 257.2 N/A 162.0 285.0 241.9 325.0 314.0 240.4 368.8
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Of the six studies, only Bieker (2021) assessed emissions from hatchbacks, hence 
hatchbacks make up the smallest subset in the sample. None of the studies analyzed 
emissions from HEV hatchbacks; in FY 2023–24, hybrid powertrains were available 
exclusively in the sedan and SUV segments.2 

Table 6 compares the estimated life-cycle emissions of BEVs with those of ICEVs and 
HEVs for the three vehicle classes. For hatchbacks, the lowest estimated life-cycle 
emissions of BEVs in the sample were 38.3% lower than the lowest estimated emissions 
of ICEVs, while the highest estimated life-cycle emissions of BEVs in the sample were 
37% lower than the highest estimated emissions of ICEVs. For sedans and SUVs, the 
lowest estimated life-cycle emissions of BEVs were lower than those of ICEVs and 
HEVs, while the highest estimated life-cycle emissions of BEVs were higher than those 
of ICEVs and HEVs.

Table 6 
Life-cycle emissions of BEVs relative to ICEVs and HEVs

Vehicle class
Powertrain 
comparison

Life-cycle emissions (g CO2e/km)

Min Max

Hatchbacks
BEV relative to HEV N/A N/A

BEV relative to ICE -38.3% -37.0%

Sedans
BEV relative to HEV -2.2% 34.4%

BEV relative to ICE -26.2% 14.0%

SUVs
BEV relative to HEV -20.7% 53.4%

BEV relative to ICE -34.3% 17.5%

For BEVs, the large variation in estimated emissions is attributable to differing 
assumptions concerning the electricity grid over the lifetime of the vehicle, including as 
it relates to the share of renewable energy in the grid mix. We compare the grid-related 
assumptions across the six studies in subsequent sections. 

Energy consumption 
Parameters related to energy consumption include fuel and electricity consumption 
rates. In this section, we compare the assumptions of vehicle cycle-related parameters 
across the studies. We assess energy consumption by vehicle class (hatchback, sedan, 
and SUV) to allow representative comparisons across the data.

Bieker (2021) did not analyze HEVs, as these vehicles had limited market share in 
India at that time (0.01%). In FY 2023–24, however, hybrid sales in the country almost 
equaled BEV sales with 91,008 units, representing 0.4% of passenger car sales.3 To 
enable comparison with the other studies, which analyzed HEV sedans and SUVs, we 
assumed emissions values for these vehicles for Bieker (2021) based on the top-selling 
HEVs in the fleet using the methodology in that paper.4  

2  The sample of hatchback vehicles in Bieker (2021) comprised four fuel types: petrol with biofuels, diesel 
with biofuels, CNG with a methane slip of 1.8 g CO₂e/km combined with biofuels, and CNG with a methane 
slip of 30 g CO₂e/km. The maximum life-cycle emissions value was recorded for the sample with methane 
slip of 30 g CO2e/km. The scenario for vehicles sold in 2030 is not included in this analysis. Sales data for 
FY 2023-24 was provided by Segment Y Automotive Intelligence Pvt Ltd.

3  Based on data from Segment Y Automotive Intelligence Pvt Ltd.
4  Among HEV sedans, the Toyota Camry Hybrid and Honda City HEV were analyzed. For HEV SUVs, the 

Maruti Suzuki Grand Vitara, Toyota Urban Cruiser Hyryder, Toyota Innova Hycross, and Maruti Suzuki 
Invicto were considered. Collectively, these six models accounted for 98% of strong hybrid sales in FY 
2023–24 according to data provided by Segment Y Automotive Intelligence Pvt. Ltd.
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Table 7 shows the mean values of test-cycle energy consumption—which refers to the 
energy a vehicle uses when tested under standardized driving conditions, typically in a 
controlled laboratory setting—assumed in each study, by vehicle class and powertrain. 
Figure 1 illustrates the distribution of test-cycle energy consumption values assumed 
across the six papers. 

Table 7 
Mean test-cycle energy consumption values assumed in each study, in MJ/km 

Study

Hatchback Sedan SUV

ICE HEV BEV ICE HEV BEV ICE HEV BEV

Abdul-Manan et al. (2022) – – – 1.8 – 0.5 1.7 – 0.4

Bieker (2021) 1.7 – 0.4 1.7 1.3 0.6 2.0 1.3 0.3

Das (2022) – – – 2.1 – – – – 1.0

Agarwal (2023) – – – 1.8 1.1 – 1.8 1.2 0.4

Gadepalli et al. (2023) – – – 2.1 – 0.5 – – –

Nadola et al, (2023) – – – 1.7 1.2 0.6 – – –

Notes: Dashed cells indicate data were not available.
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Figure 1 
Distribution of test-cycle energy consumption values assumed across studies
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For sedans and SUVs, the spread in energy consumption values is more prominent 
for ICEVs than for HEVs. Moreover, there is considerable variation in values for 
battery-electric SUVs. For BEV SUVs, Das (2022) reported a value of 1 MJ/km (27.8 
kWh/100 km), much higher than other values in the dataset, corresponding to the 
energy consumption reported for the Hyundai Kona EV. The Hyundai Kona EV is 
also modeled as a representative BEV in Agarwal (2023), which reported an energy 
consumption value nearly 50% lower, at 0.5 MJ/km (12.9 kWh/100km). For comparison, 
the manufacturer-reported energy consumption of the 2022 Hyundai Kona EV in India 
is 0.3 MJ/km (8.6 kWh/100 km)(Hyundai Kona Electric, 2022) 

Real-world driving conditions often differ from the conditions in standardized test 
cycles. To address this, a real-world adjustment factor is used. The adjustment factor 
is a correction applied to test results to account for variations in driving behaviour, 
road conditions, and environmental factors to reflect actual on-road performance. 
2 illustrates the distribution of real-world adjustment factors used for the test-cycle 
consumption values assumed across all studies, by powertrain. 

Figure 2 
Distribution of real-world adjustment factors assumed across studies
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Table 8 shows the mean values of energy consumption adjustment factors for each 
study by powertrain. In several studies, adjustment factors applied for BEVs were 
higher than those applied for ICEVs and HEVs. For BEVs, Bieker (2021) applied 
an adjustment factor of 1.34, accounting for 15% charging losses, to the Modified 
Indian Driving Cycle (MIDC) energy consumption values.5 None of the other studies 
referenced charging losses when estimating the energy consumption of BEVs. 
Abdul-Manan et al. (2022) applied a real-world adjustment factor of 1.46 for BEVs, 
which includes a 40% correction from test-cycle energy consumption values and an 
additional 6% temperature adjustment factor reflecting ambient conditions in India. 
Across all studies, the average real-world adjustment factor for ICEVs was 1.24 and for 
HEVs was 1.27. The highest real-world adjustment factor for ICEVs was 1.34 (Agarwal, 
2023; Bieker, 2021) and for HEVs was 1.50 (Bieker, 2021).

5  The MIDC is based on a standardized driving pattern representing typical urban and highway driving 
conditions in India. The maximum speed in the MIDC cycle is set to 90 km/h.
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Table 8 
Mean real-world adjustment factors for energy consumption in each study, by 
powertrain 

Study

Hatchback Sedan SUV

ICE HEV BEV ICE HEV BEV ICE HEV BEV

Abdul-Manan et al. (2022) – – – 1.2 – 1.5 1.2 – 1.5

Bieker (2021) 1.3 – 1.6 1.3 1.5 1.6 1.3 1.5 1.6

Das (2022) – – – 1.0 – – – – 1.0

Agarwal (2023) – – – 1.3 1.3 – 1.3 1.3 1.3

Gadepalli et al. (2023) – – – 1.0 – 1.0 – – –

Nadola et al. (2023) – – – 1.0 1.0 1.0 – – –

Range of real-world adjustment 
factors across studies 1.3 – 1.6 1.0–1.3 1.0–1.5 1.0–1.6 1.2–1.3 1.3–1.5 1.3–1.6

Note: Dashed cells indicate data were not available.

Vehicle use indicators
Vehicle use indicators represent how much mileage is accrued by a vehicle over 
its useful life based on assumptions of total VKT, vehicle lifetime, and mileage 
degradation. 9 shows the distribution of these assumptions across the studies. 

Table 9  
Lifetime VKT, vehicle lifetime, and mileage degradation factor assumed in each 
study

Study Vehicle class Lifetime VKT 
Vehicle lifetime 

(years)
Mileage degradation 

factor

Abdul-Manan et al. (2022) Sedan and SUV 200,000 16 –

Bieker (2021) 
Hatchback and sedan 165,000 15 3.0% per year

SUV 188,000 15 3.0% per year

Das (2022) Sedan and SUV 160,000 15 –

Agarwal (2023) Sedan and SUV 200,000 10 –

Gadepalli et al. (2023) Sedan 181,500 15 –

Note: Dashed cell indicated data were not available.

The six studies applied relatively uniform values of vehicle use indicators across all 
powertrains. While most studies assumed vehicle lifetimes of 15–16 years, Agarwal 
(2023) assumed a shorter 10-year lifetime; along with Abdul-Manan et al. (2022), 
Agarwal (2023) also assumed the highest lifetime VKT, of 200,000 for sedans and 
SUVs. Only Bieker (2021) considered a mileage degradation factor, which increases the 
estimated GHG intensity of vehicles by shifting some mileage from later years, which 
are characterized by less carbon-intense fuel and electricity supply, to the near-term, 
where both are dominated by fossil fuels. 

Carbon intensity of fuels
Conventional fuels analyzed in the studies included gasoline, diesel, and CNG. Bieker 
(2021) and Nadola et al. (2023) also considered biofuel blending as part of their fuel 
scenarios. Bieker (2021) modeled a dynamic fuel blend of ethanol in gasoline, biodiesel 
in diesel, and biomethane in CNG over the vehicle lifetime.
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In Bieker’s scenario, shares of ethanol in gasoline start at a 5% volumetric blend in 2020 
and increase to 20% by 2040. The share of cellulosic ethanol within the fuel blend from 
second-generation sources like agricultural residues and energy crops also gradually 
increases from 0% in 2020 to 15% by 2040, with molasses-based ethanol staying 
constant at 5% throughout the projection. The biofuel assumptions in the study are 
based on India’s 2018 National Policy on Biofuels and feature high shares of sustainable 
cellulosic ethanol for blending in gasoline, used cooking oil (UCO) and municipal solid 
waste (MSW) for blending in diesel, and biogas for blending in CNG. Agarwal (2023) 
considered three scenarios for ethanol blending, assuming constant blend shares of 10%, 
20%, and 30% over the vehicle lifetime with all ethanol being produced from sugarcane.

Bieker (2021) was the only study to consider biofuel blending with diesel and CNG. 
For diesel, Bieker assumed that UCO-based biodiesel and MSW-based syndiesel 
collectively make up 5% of diesel use in 2040. For CNG, Bieker assumed sewage-based 
biomethane blending shares increase from 0% in 2020 to 10% by 2040. 

Table 10 presents the various biofuel blending scenarios considered across the six 
studies. For Bieker (2021), a lifetime average biofuel blend rate is reported based 
on weighting the progressively increasing biofuel blend rates with the progressively 
decreasing mileage of the vehicle assumed over the lifetime.

Table 10  
Biofuel blending scenarios in each study 

Study
 

Ethanol Biodiesel / syndiesel Biomethane

Average 
lifetime blend 

rate Feedstock

Average 
lifetime blend 

rate Feedstock

Average 
lifetime blend 

rate Feedstock

Abdul-Manan 
et al. (2022) – – – – – –

Bieker (2021) 12.0%

Molasses, 
agricultural 

residue, energy 
crops

2.0% UCO, MSW 3.7% Sewage

Das (2022) – – – – – –

Agarwal (2023) 10%, 20%, 30%a Sugar-cane – – – –

Gadepalli et al. 
(2023) – – – – – –

Nadola et al. 
(2023) – – – – – –

a Gasoline-ethanol blend scenarios are 10%, 20%, and 30%. 
Note: Dashed cells indicate data were not available.

Table 11 presents the upstream WTT emission factors associated with conventional 
fuels and biofuels used in each study, and Figure 3 illustrates the distribution across 
studies. CNG values depicted in Figure 3 assume a 100-year global warming potential 
(GWP) for methane.6 Only two studies, Bieker (2021) and Agarwal (2023), considered 
biofuel blending, and only Bieker reported ILUC emissions associated with various 
biofuel feedstocks. For the other studies, we estimated these emission factors based 
on the available data. In some cases, this involved making reasonable estimations by 
assuming values pertaining to the property of fuel, such as calorific value or density. 

6  GWP is a measure of how much heat 1 ton of a given GHG absorbs over a given time period relative to the 
same amount of CO2.
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Wherever such assumptions were required in the absence of directly available WTT 
values, we used fuel property data based on Bieker (2021). 

Table 11 
Upstream WTT emission factors in each study

Study Gasoline (g CO2e/MJ) Diesel (g CO2e/MJ) CNG (g CO2e/MJ)

Abdul-Manan et al. (2022) 17.3 16.4 –

Bieker (2021) (inlcudes ILUC) 19.9 21.9 29.8 (20-year GWP) and 
15.3 (100-year GWP)

Das (2022) – – –

Agarwal (2023) 18.2 – – 

Gadepalli et al. (2023) 13.5 – –

Nadola et al. (2023) 8.4 8.2 15.0

Range of upstream WTT emissions 
across the studies 8.4–19.9 8.2–21.9 15.0–29.8

Note: Dashed cells indicate data were not available.

Figure 3 
Distribution of upstream WTT emission factors for conventional fuels assumed 
across studies
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There are large spreads in the upstream WTT emission factor values for diesel and 
CNG. For diesel, the lowest WTT emission factor for diesel is 8 g CO2e/MJ (Nadola et 
al., 2023), while the highest is 22 g CO2e/MJ (Bieker, 2021). Among the studies, only 
Bieker provided the WTT emission factors for CNG and considered two GWP scenarios. 
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As shown in the figure above, the values range from a minimum of 15.3 (based on a 
100-year GWP) to a maximum of 29.8 (based on a 20-year GWP). When considering a 
20-year GWP, the upstream WTT emission factor for CNG is higher than that of both 
gasoline and diesel (Bieker, 2021).

Figure 4 shows the upstream emission factors for biofuels assumed in the studies, 
including ILUC emissions where appropriate.7 Bieker (2021) estimated WTT emissions 
for biofuels including ILUC emissions, while Agarwal (2023) made no reference to ILUC 
emissions. It is expected that food-based biofuels such as sugarcane ethanol, which is 
considered in Agarwal (2023), will have sizeable ILUC emissions associated with their 
production. 

Figure 4 
Upstream WTT emission factors for biofuels assumed across studies
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In 2022, the Indian Government amended its National Policy on Biofuels, bringing 
forward the 20% ethanol blending target from 2030 to 2025. As of FY 2023–24, India is 
reported to have achieved 12% ethanol blending (Ashokan, 2024). While the amended 
policy does not explicitly outline a feedstock strategy to meet the accelerated target, 
scaling supply will likely entail supplementing sugar-based feedstock with ethanol 
produced from corn, broken rice, and surplus rice feedstocks, which can be associated 
with significant ILUC emissions. Further, the Indian government is also promoting 
flex-fuel vehicles, which run ethanol blend shares between 85% and 100%, as part of a 
“multi-fuel” decarbonization strategy for the transport sector. At higher ethanol blend 

7  When biofuel blending is taken into account, WTT emissions also include ILUC emissions associated with 
the amount of biofuels used. ILUC occurs when agricultural resources are diverted to fuel production, 
leading to global land cover changes and, consequently, GHG emissions.
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levels, more food and feed may be needed, which could lead to unintended land-use 
issues and sustainability concerns.

Table 12 summarizes the TTW emission factors for fuel combustion for each 
conventional fuel considered, while Figure 5 illustrates the distribution of TTW emission 
factors for fuel combustion across the six studies. The emission factors are observed to 
be relatively consistent across all studies. For CNG-powered cars, there can be sizeable 
additional emissions associated with methane slip. 

Table 12 
TTW emission factors used in each study

Study
Gasoline  

(g CO2e/MJ)
Diesel  

(g CO2e/MJ)
CNG  

(g CO2e/MJ)

Abdul-Manan et al. (2022) 74.3 75.6 –

Bieker (2021) 73.4 73.2 60.0

Das (2022) – – –

Agarwal (2023) 80.0 – –

Gadepalli et al. (2023) 69.0 – –

Nadola et al. (2023) 73.3 67.7 55.9

Range of TTW emissions 73.3–80.0 67.7–75.6 55.9–60.0

Note: Dashed cells indicate data were not available.

Figure 5 
TTW emission factors for fuel combustion across studies
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Only Bieker (2021) and Nadola et al. (2023) analyzed CNG powertrains in their studies. 
Unlike Nadola et al., Bieker explicitly accounted for the additional emissions from 
methane slip associated with the combustion of CNG. In the absence of methane 
slip data from Indian passenger cars, Bieker assumed methane slip emission factors 
based on data for Euro 6 cars in the European Union (2 g CO2e/km, assuming a 100-
year GWP), while noting that methane slip from passenger cars in other markets are 
reported to be much higher. The large variability in emission factors for methane slip 
highlights the need for India-specific emission factors to be considered in future work. 
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For biofuels, TTW emissions are assumed to be zero on account of a biogenic 
feedstock credit that offsets emissions in proportion to the volumetric blend share 
assumed in the fuel mix. In theory, biogenic feedstocks will still result in TTW emissions 
of nitrous oxide and methane, resulting in non-zero TTW emissions. As BEVs have zero 
emissions at the tailpipe, TTW emissions from BEVs are zero.

Carbon intensity of electricity supply
The carbon intensity of electricity generation is a crucial factor in determining the 
overall emissions of electric vehicles. In India, electricity is generated from a diverse 
mix of energy sources, including coal, natural gas, hydropower, nuclear, wind, and solar, 
each with different carbon intensities. Table 13 summarizes the grid supply emissions 
assumed in each study. 

Table 13 
Assumptions of electricity grid carbon intensity in each study

Studies 

Sample 
size of grid 
scenarios

Carbon intensity (g CO2e/kWh)

Mean Median Minimum Maximum

Abdul-Manan et al. (2022) 24 879.1 922.7 501.1 1080.0

Bieker (2021) 2 653.4 653.4 560.9 745.9

Das (2022) 3 1260.0 1329.8 1050.1 1400.0

Agarwal (2023) 1 975.6

Nadola et al. (2023) 3 803.9 864.0  612.0 936.0

Gadepalli et al. (2023) 3 634.3 588.9 523.1 790.9

Among the six studies considered, Abdul-Manan et al. (2022) featured the most 
extensive range of grid scenarios, including variations in charging times (day or night) 
across two seasons (summer and winter). They also incorporated scenarios assuming 
annual carbon intensity reductions ranging from 0.5% to 1.5% relative to the baseline, 
and covered different regional grids within India. Bieker’s (2021) approach modelled 
the carbon intensity of the grid as the weighted average grid emissions intensity over 
the vehicle’s lifetime based on data from the IEA and Intergovernmental Panel on 
Climate Change life-cycle emissions factors (Stocker et al., 2013).  

Assuming a single carbon intensity value does not account for changes in the 
Indian energy mix over time. Bieker (2021), however, adopted a dynamic approach, 
considering the average carbon intensity over a vehicle’s lifetime based on projections 
from the IEA World Energy Outlook—specifically, the Stated Policies Scenario (STEPS) 
and Sustainable Development Scenario (SDS). Das (2022) applied values from the 
International Renewable Energy Agency (IRENA)’s 2030 scenario. Nadola et al. (2023), 
meanwhile, applied both NITI Aayog’s 2030 scenario and the CEA’s optimistic scenario. 
Apart from Agarwal (2023), most studies explored multiple grid scenarios. 

The highest carbon intensity of grid supply value was assumed in Das (2022), which 
considered a static electricity mix based on the FY 2018–19 grid. The lowest value 
was in Gadepalli et al.’s (2023) ambitious scenario, which assumed a 53% fossil fuel 
generation mix by 2030, emphasizing the substantial emission reductions achievable 
with greater integration of renewables into the grid. Among studies that assumed static 
mixes, Abdul-Manan et al.’s (2022) analysis of the FY 2018–19 electricity mix in the 
northeastern grid also showed a notably low carbon intensity, underscoring regional 
variations in grid emissions based on the specific energy sources in use.
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Table 14 summarizes the grid scenario assumptions in the six studies. Each study used 
different scenarios for the generation mix over the vehicle lifetime. Among constant 
generation scenarios, which assumed the generation mix remains unchanged over 
time, fossil fuel shares varied even when they used the same CEA data for the 2018–19 
generation mix: Abdul-Manan et al. (2022) assumed 81% fossil fuel and Das (2022) 
assumed 78%. Similarly, using the same 2020–21 CEA data, Agarwal (2023) assumed a 
fossil fuel share of 79%, while Gadepalli et al. (2023) assumed 76%.

Among dynamic scenarios, in which the generation mix changes over time, Nadola 
et al. (2023) and Das (2022) adopted the most conservative projections of the fossil 
fuel share for 2030. As noted above, Bieker (2021) included two scenarios from 
the IEA’s World Energy Outlook: STEPS and SDS. STEPS represents the current 
policy framework, including policies under development. Under this scenario, India 
surpasses the targets outlined in its Nationally Determined Contribution under the 
Paris Agreement. Meanwhile, the SDS scenario examines how India could achieve a 
significant increase in clean energy investments to enable an early emissions peak 
followed by a rapid decline, aligning with the long-term goal of net-zero emissions 
while advancing progress on various sustainable development objectives.

Table 14 categorizes the scenarios in each study into three groups by ambition 
in phasing out fossil fuels: conservative, optimistic, and ambitious/aggressive. 
Conservative scenarios project the fossil fuel share to range between 65% and 70% 
by 2030. Optimistic scenarios assume it will be between 50% and 65% by 2030. 
Ambitious/aggressive scenarios assume the share will drop below 50% by 2030. 

The CEA’s National Electricity Plan (NEP) for 2022–2032 projects a significant shift in 
India’s energy mix (CEA, 2024b). The fossil fuel share is anticipated to decline from 
61% in FY 2026–27 to 51% by FY 2031–32. As of 2024, renewable energy accounted for 
46.3% of total installed capacity (Ministry of New and Renewable Energy, 2024).
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Table 14 
Grid scenarios in India’s NEP and the six studies, highlighting fossil generation mix over vehicle lifetime

Scenario  Used by study 
Scenario 
source 

Years of 
vehicle 

operation Fossil generation share 

Average carbon 
intensity of electricity 

(g CO2e/kWh)

NEP  — CEA  – Declines to 61% in 2026–27 
and 51% in 2031–32.  548.0

Constant generation mix scenarios 

Constant 
2018–2019 mix

Abdul-Manan et al. 
(2022) CEA  2018–2019 81% (constant) 778.9 

Das (2022) CEA 2018–2019 78% (constant) 1,400.0

Constant 
2019–2020 mix

Nadola et al. (2023) CEA  2019–2020 75% (constant) 775.7 

Agarwal (2023)  CEA 2019–2020 79% (constant) 820.5

Gadepalli et al. 
(2023) ITF-World Bank 2020 76% (constant) 791.0 

Conservative scenarios

Reference Das (2022) IRENA  2030 Increases to 82% in 2030  1,330.0

2030 
Conservative Nadola et al. (2023) NITI Aayog  2030 Declines to 70% in 2030  744.8

REmap Das (2022) IRENA  2030 Declines to 65% in 2030  1,050.0

Optimistic scenarios

STEPs Bieker (2021) IEA  2021–2035 Declines to 69% in 2025 and 
59% in 2030  746.0

IPS Gadepalli et al. 
(2023) ITF-World Bank 2030 Declines to 65% in 2025 and 

53% in 2030  589.0

Optimal 
Generation Mix

Abdul-Manan et al. 
(2022)  CEA  2030 Declines to 60% in 2029–30  568.1

Ambitious/aggressive scenarios

SDS Bieker (2021) IEA  2021–2035 Declines to 41% by 2030  561.0

Net-zero Gadepalli et al. 
(2023) ITF-World Bank 2030 Declines to 46% by 2030  523 

2030 
Aggressive Nadola et al. (2023)  CEA  2030 Declines to 56% by 2030  556.9 

Transmission and distribution (T&D) losses refer to the energy lost as electricity is 
transmitted from power plants to end-users due to resistance in transmission lines 
and inefficiencies in distribution networks (Bhatt & Singh, 2021). Table 15 presents 
the assumptions of T&D losses across the studies. Four out of six studies assumed a 
standard loss of or near 19%. Gadepalli et al. (2023) assumed a substantially lower 
value for T&D losses, of 4.9%, implying a far more limited gap between electric power 
supplied and electric power consumed. Variations in T&D loss assumptions impact 
the overall carbon intensity calculations, as higher T&D losses translate to greater 
emissions per unit of electricity delivered to end-users. As of FY 2022–23, India’s T&D 
losses stood at 17.68% (CEA, 2024a). Efforts are underway to reduce these losses to 
12–15% by FY 2025–26 under the Government’s Revamped Distribution Sector Scheme 
(Ministry of Power, 2023a).
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Table 15 
Sample characteristics of T&D loss assumptions in each study

Studies

Sample 
size of grid 
scenarios Mean Median Minimum Maximum

Abdul-Manan et al. (2022) 24 19.0%

Bieker (2021) 2 19.0%

Das (2022) 3 19.0%

Agarwal (2023) 1 18.9%

Gadepalli et al. (2023) 3 4.9%

Nadola et al. (2023) 3 16.0% 16.0% 10.0% 21.0%

Carbon intensity of battery production
The carbon intensity of battery production is primarily influenced by the materials that 
make up the battery cells and pack. Lithium-ion batteries, the most widely used battery 
type in BEVs, are distinguished based on cathode chemistries: lithium cobalt oxide 
(LCO), lithium manganese oxide (LMO), lithium cobalt oxide (LCO), nickel manganese 
cobalt (NMC), lithium iron phosphate (LFP), and nickel cobalt aluminum (NCA). NMC 
batteries are further sub-classified based on the ratio of nickel, manganese, and cobalt 
used in the cathode. While first generation NMC batteries contained equal shares of all 
three cathode materials (NMC 111), the development of next generation NMC batteries 
has been characterized by increasing nickel content to increase energy density while 
lowering cobalt content. NMC 811 batteries are the latest and most energy dense NMC 
variant on the market to date.

Table 16 shows the mean battery capacity values for HEVs and BEVs assumed in each 
study and Figure 6 illustrates the distribution across studies.

Table 16  
Mean battery capacity values used in each study by vehicle class and powertrain type 

Study

Hatchback Sedan SUV

HEV 
(kWh)

BEV  
(kWh)

HEV  
(kWh)

BEV  
(kWh)

HEV  
(kWh)

BEV  
(kWh)

Abdul-Manan et al. (2022) – – – 0.5 – 0.4

Bieker (2021) – 23 1.2 23 1.1 32.3

Das, 2022 – – – – – 39.2

Agarwal (2023) – – 5.9 – 5.9 34.7

Gadepalli et al. (2023) – – – 40 – –

Nadola et al. (2023) – – – – – –

Note: Dashed cells indicate data were not available.
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Figure 6 
Distribution of battery capacity values across studies
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For BEV sedans, the average assumed battery capacity across the studies was 23 
kWh, while the highest was 40 kWh. For BEV SUVs, the average was 34 kWh while the 
highest was 39 kWh. For context, in FY2023–24, the sales-weighted average battery 
capacity was 23 kWh for BEV hatchbacks, 31 kWh for BEV sedans, and 35 kWh for BEV 
SUVs.8

HEVs are also equipped with a small battery pack. Of the six studies, only Bieker 
(2021) set out assumptions concerning HEV battery capacity. Agarwal (2023) did 
not directly report the capacity of HEV batteries, but based on the reported battery 
weight (49 kg) and battery density (120 Wh/kg), we estimated that sedans and SUVs 
were assumed to be equipped with a 5.88 kWh battery. Based on data from Segment 
Y, the two models considered in Agarwal (2023)—the Honda City eHEV sedan and 
the Maruti Suzuki Grand Vitara SUV—are equipped with much smaller batteries, in the 
range of 0.7–0.8 kWh. 

Figure 7 illustrates the BEV battery assumptions in the reviewed literature. In the 
dataset, 62% of representative models considered were assumed to be equipped with 

8  These values are based on data provided by Segment Y Automotive Intelligence Pvt. Ltd.
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NMC batteries, 8% with LMO, and 7% with LFP. Among NMC battery chemistries, 46% 
of the vehicles assessed ran on NMC 622 and 8% used NMC 111. 

Figure 7 
Battery chemistry shares among representative BEV models across studies
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In 2023, LFP was the most prevalent battery chemistry in the Indian passenger car 
market (Stellarix, 2024). That year, 90% of sales of the top 11 highest selling BEV cars 
in India—which in turn represented 90% of total BEV sales—were of LFP-powered 
vehicles, with NMC-powered vehicles making up the remaining 10%.9 LFP batteries are 
projected to maintain high market shares of near 60% in India’s BEV market by 2030 
(Moerenhout et al., 2023). Future LCAs of passenger cars in India might therefore 
consider including scenarios with higher market shares of LFP batteries. 

Figure 8 presents the assumptions of carbon intensity of battery production in each of 
the six studies, while Table 17 illustrates the distribution across studies. 

Table 17 
Assumed carbon intensity of battery production in each study by battery chemistry

Study Battery chemistry

Carbon intensity of  
battery production  

(kg CO2eq/kWh)

Abdul-Manan et al. (2022) NMC 622 124.5

Bieker (2021) NMC 622 68.0

Das (2022)

NMC 164.0

LMO 88.0

LFP 297.0

Agarwal (2023) – 123.0

Gadepalli et al. (2023) NMC 111 93.0

Note: Dashed cells indicate data were not available.

9  These values are based on sales data for FY 2023–24 provided by Segment Y Automotive Intelligence Pvt Ltd.
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Figure 8 
Distribution of carbon intensity of battery manufacturing assumed across studies
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Most studies assumed that modeled BEVs were equipped with NMC batteries, though 
a wide range of emission factors for NMC battery manufacturing was observed 
across the dataset. Das (2022) assumed the highest emission factor for NMC battery 
production at 164 kg CO2e/kW, while Bieker (2021) assumed the lowest, at 68 kg CO2e/
kWh.

Table 18 presents the carbon intensity of battery production values alongside the 
assumptions concerning battery replacement in the vehicle lifetime for each study.

Table 18 
Battery replacement assumptions in each study

Study Battery replacement assumption
Carbon intensity  
(kg CO2e/kWh)

Gadepalli et al. (2023) 1 replacement 93.0

Abdul-Manan et al. (2022) 1 replacement 124.5

Agarwal (2023) 1 replacement 123.0

Bieker (2021) No replacement 68.0

Das (2022) – NMC No replacement 164.0

Das (2022) – LFP No replacement 297.0

Das (2022) – LMO No replacement 88.0

Gadepalli et al. (2023), Abdul-Manan et al. (2022), and Agarwal (2023) considered 
scenarios with one battery replacement over the lifetime of the BEV. Bieker (2021) 
assumed no battery replacement is needed because lithium-ion batteries are typically 
considered to reach the end of their useful life when they reach 70%–80% of their 
initial capacity. In rigid battery durability tests, NMC batteries have been demonstrated 
to sustain more than 80% of their initial capacity after 3,000–5,000 equivalent full 
cycles and LFP batteries have been shown to remain above that value even after 
5,000–6,000 equivalent full cycles. For light-duty BEVs with a range of 200–400 km, 
a battery lifetime of 3,000–5,000 equivalent full cycles would correspond to a mileage 
of 600,000–2,000,000 km. This is several times higher than an average LDV lifetime 
mileage of 150,000–300,000 km (Bieker, 2021; Li et al., 2024). 
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Das (2022) was the only study to explicitly consider battery recycling; however, there 
are insufficient data to infer the extent of recycling credits. Bieker (2021) did not 
account for battery recycling credits, and assumed that in the 2035–2050 timeframe, 
battery recycling ecosystems globally will mature and can potentially result in lowering 
of battery production emissions by 14%–50%. None of the studies considered the 
use of batteries in second life applications, which can further lower the production 
emissions attributed to the vehicle cycle for BEVs. 

Carbon intensity of vehicle production
The carbon intensity of vehicle production includes emissions associated with the 
production of glider and powertrain systems, maintenance, and any end-of-life 
recycling credits applied from material recycling of scrapped vehicles. 

Table 19 shows the mean values of kerb weights by powertrain type where available, 
and Figure 9 shows the distribution of vehicle kerb weights assumed across the six 
studies. For sedans and SUVs, a large spread in kerb weight within each vehicle class 
was observed across all studies, with HEV sedans and SUVs assumed to be heavier 
than corresponding BEVs. (As all HEVs sold in India in FY 2023–24 were sedans and 
SUVs, HEVs were not analyzed in the hatchback segment.) Based on SIAM vehicle 
classifications, in which hatchbacks and sedans are classified into six sub-segments 
based on length and engine displacement and SUVs into another six sub-segments 
based on length and vehicle price, all HEV sedans in the sample belong to the 
(relatively heavier) premium and executive segment, whereas all BEV sedans pertain to 
the smaller compact and super-compact segments.10 Similarly, HEV SUVs in the sample 
include top-selling models from the larger UV4 segment, while most BEV SUVs are 
from the subcompact UV1 segment. Ideally, for an LCA comparison across powertrains, 
it is important to ensure that the vehicles compared are from similar weight classes, 
which is not reflected in the study sample analyzed. 

Table 19 
Mean values of kerb weights by powertrain

Study

Sedan SUV

ICE (kg) HEV (kg) BEV (kg) ICE (kg) HEV (kg) BEV (kg)

Abdul-Manan et al. (2022) 1,113.0 – 1,408.0 1,271.0 – 1,400.0

Das (2022) 1,455.0 – 1,685.0 – – –

Agarwal (2023) 1,110.0 1,280.0 – 1,240.0 1,290.0 1,388.0

Gadepalli et al. (2023) 1,300.0 – 1,240.0 – – –

Note: Dashed cells indicate data were not available.

10 Car sub-segments are mini, compact, super-compact, mid-size, executive, and premium, and SUV sub-
segments are UVC, UV1, UV2, UV3, UV4, UV5. While the SIAM classification for SUVs is powertrain-
agnostic, the classification for hatchbacks and sedans is partly based on engine displacement. Based on 
our discussions with SIAM officials, SIAM has not updated its methodology to extend the classification 
system to BEVs (e.g., by using battery capacity in lieu of engine displacement). For BEV sedans and 
hatchbacks, we have arrived at SIAM classifications using length-based thresholds only.
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Figure 9  
Distribution of kerb weights assumed for each powertrain type across studies
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Figure 10 illustrates the variation in the carbon intensity of vehicle production assumed 
across the six studies, expressed in terms of CO2e emissions normalized to the weight 
of the vehicle, excluding battery weight. In the case of BEVs, the carbon intensities of 
battery production and any battery recycling credits are excluded. 
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Figure 10 
Distribution of carbon intensity of vehicle production assumed across studies
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A wide variance was observed in vehicle manufacturing emission factors, particularly 
for ICEVs in the sedan and SUV segments. There is a lack of sufficient context available 
in the studies to explain this wide variance. 

Table 20 shows the mean values of carbon intensity of vehicle production for each 
study. While no data are available from Bieker (2021) or Nadola et al. (2023), Agarwal 
(2023) and Das (2022) assumed average vehicle manufacturing emissions of between 
4 and 5 kg CO2e/kg, while Gadepalli et al. (2023) and Abdul-Manan et al. (2022) 
assumed values near 3 kg CO2e/kg. 
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Table 20 
Mean carbon intensity of vehicle production values by powertrain, in kg CO2e/kg

Study

Hatchback Sedan SUV

ICE HEV BEV ICE HEV BEV ICE HEV BEV

Abdul-Manan et al. (2022) – – – 2.8 – – 2.5 – –

Bieker (2021) – – – – – – – – –

Das (2022) – – – 4.7 – – – – –

Agarwal (2023) – – – 4.5 4.3 – 4.8 4.3 4.2

Gadepalli et al. (2023) – – – 3.2 – 3.3 – – –

Nadola et al. (2023) – – – – – – – – –

Note: Dashed cells indicate data were not available.

STATISTICAL ANALYSIS
A bootstrapping analysis using random forest algorithms was applied to assess the 
relative importance of different variables in explaining the variance of GHG intensity 
across studies. Figure 11 shows the results of this analysis using all the inputs for the 
three powertrains. The dots show the mean importance, and the lines represent the 
95% confidence interval. The aggregation of importance values of all variables is 1. 

According to the analysis, the most important variables were electricity generation 
emissions (i.e., grid carbon intensity), test-cycle energy consumption, and real-world 
energy consumption adjustment factor. These three variables together explained about 
three-quarters (77%) of the variance across studies. 
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Figure 11 
Importance of variables using inputs for ICEVs, BEVs, and HEVs

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Importance

Vehicle lifetime (years)

WTT Biofuel emissions (gCO2e/MJ)

Battery replacement
during vehicle lifetime

T&D losses

Biofuel blend share %

WTT emissions of conventional
fuel (g CO2e/MJ)

TTW emissions of conventional
fuel (g CO2e/MJ)

Lifetime distance traveled (km)

Battery capacity (kWh)

Emission intensity of
battery (kg CO2e/kWh)

Kerb weight (kg)

Real world adjustment factor

Test cycle energy
consumption (MJ/km)

Emissions due to generation of
electricity (CO2e/kWh)

Correlation with target variable (with 95% CI)

THE INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION THEICCT.ORG

The electricity generation emissions variable primarily impacts the life-cycle emissions 
of BEVs, while the test-cycle energy consumption and real-world energy consumption 
adjustment factor variables shape the WTW emissions of all powertrains, notably 
hybrids. The kerb weight, emissions intensity of battery production, and VKT variables 
are the next most important, accounting for 0.13 of importance on average—though 
large and overlapping confidence intervals due to the small sample size complicate 
direct comparison.11 

The key variables for estimating WTW emissions might vary for different powertrains, 
and the importance results depend heavily on the inputs. Figure 12 shows the importance 
results for only ICEVs and HEVs. Excluding BEVs, the most important variables are 
test-cycle energy consumption, WTT emissions of conventional fuels, and vehicle kerb 
weight. The mean importance of these three variables sums to 0.78, with the test-cycle 
energy consumption accounting for more than half of the observed variance. 

11 Moreover, some variables that might be important might not be identified, as random forest relies heavily 
on the input dataset. For example, T&D loss could affect the emissions from electricity, but four of the six 
studies assumed a standard value of 19% for T&D loss. With such little difference in input values,T&D loss 
will not be considered to cause significant change in the dependent variable.
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Figure 12 
Importance of variables excluding BEVs
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Intuitively, variables concerning electricity generation and batteries are insignificant, 
as factors such as the grid carbon intensity and T&D losses will not notably impact 
the WTW emissions of vehicles powered by fossil fuels. Biofuel-related variables 
become comparatively more important when BEVs are excluded, with the biofuel blend 
share and WTT biofuel emissions variables accounting for a combined importance 
of 0.11. However, the uncertainty of the importance results increases significantly 
when excluding BEVs: The 95% confidence interval ranges expand, and the average 
deviation from the mean value increases from 75% to 86% for the confidence interval 
lower limit and from 205% to 235% for confidence interval upper limit. The R2 value, 
meanwhile, decreases from 0.89 to 0.18. This occurs because the sample population of 
vehicle classification, powertrain, and fuel type narrows to 31 rows, which might not be 
adequate for analysis with 14 variables. 

The results of other statistical techniques mentioned in the methods section—
correlation analysis, linear regression, and perturbation analysis—are presented in 
Appendix B. 
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DISCUSSION
Our comparative and statistical analyses highlighted considerable differences in 
methods and assumptions for the LCA approach across the six studies. When we 
evaluated all three powertrains in the sample, our bootstrapping analysis found that 
varying assumptions in grid carbon intensity, test-cycle energy consumption, and the 
real-world energy consumption adjustment factor explained about three-quarters of 
the variance in GHG intensity across the six studies. Differences in assumptions for 
the three next most important variables—kerb weight, emissions intensity of battery 
production, and VKT—were found to be less important. Considering only ICEV and HEV 
powertrains, test-cycle energy consumption, upstream WTT emissions, and vehicle 
kerb weight were the most important variables. 

These findings support the following conclusions and recommendations regarding 
ways to improve future LCAs of passenger cars in India.

Use appropriate and dynamic assumptions for grid carbon intensity. India’s CEA has 
forecast that the emissions intensity of electricity generation will drop from 0.82 kg 
CO2/kWh in 2020 to between 0.41 and 0.47 kg CO2/kWh in 2030 (Ministry of Power, 
2023b). Modeling a static carbon intensity for the electricity grid mix over a vehicle’s 
lifetime ignores the expected decarbonization of the grid due to an increasing share of 
non-fossil energy sources and likely inflates life-cycle emissions of BEVs. Future LCA 
studies could incorporate dynamic grid carbon intensity scenarios to provide a more 
accurate assessment of emission reductions over time. Studies that do not reflect this 
improvement will generate overly pessimistic results for BEVs. 

Capture the growing impact of hybrid technology by including HEVs in LCA studies. 
Hybrid vehicles are significantly more fuel-efficient than ICE vehicles. In India, HEV 
sales have grown rapidly—rising by 310% in 2023 compared with 2022, followed by 
another 29.8% increase in 2024 (Segment Y, 2024). Given this substantial growth and 
their improved fuel efficiency, it is important to include HEVs in future LCA studies of 
passenger vehicles to understand the environmental impacts and benefits, especially in 
terms of energy efficiency.

Apply an appropriate real-world energy consumption adjustment factor to 
distinguish test-cycle versus real-world fuel consumption. Research shows that there 
is a substantial difference between test-cycle and real-world fuel consumption. Using 
a real-world conversion factor for test-cycle values would provide greater analytical 
clarity for researchers. Real-world adjustment factors for BEVs would ideally consider 
lab-to-road differences, charging losses, and a temperature adjustment to account for 
ambient environmental conditions in India. 

For consistent comparison when evaluating different powertrains, parameters 
related to vehicle size should be representative. This is particularly important in 
the sedan and SUV segments, which encompass a wide range of vehicle sizes. Sales-
weighted average specifications for vehicle sizing parameters should be used instead 
of relying on representative models. If representative models are used, variances can 
be reduced by selecting models within the same vehicle class as defined by SIAM to 
ensure consistent comparisons across powertrains.

Vary the WTT carbon intensity of liquid fuels appropriately with robust assumptions 
on biofuel blending and ILUC emissions. As the Government of India pursues its 
ethanol blending target of 20% by 2025 and seeks to promote flex-fuel pathways 
beyond E20 for passenger cars, future LCA assessments of Indian passenger vehicles 
could account for increasing shares of biofuels. In addition, given the importance of 
ILUC as a driver of biofuel WTT emissions, including ILUC in this analysis is critical to 
accurately assessing the relative merits of biofuels.
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CONCLUSIONS AND POLICY IMPLICATIONS
This study reviewed six LCA studies of passenger cars in India, highlighting wide 
variation in reported GHG emissions. Through an analysis of these papers’ modeling 
assumptions related to vehicle and fuel cycle emissions, we identified three variables 
that explained about three-quarters of the variance in life-cycle GHG intensity: 
grid carbon intensity, test-cycle energy consumption, and the real-world energy 
consumption adjustment factor.

Das (2022) assumed the highest carbon intensity of grid supply, at 1,400 g CO2e/
kWh. This study used a static electricity mix based on FY 2018–19 data. In contrast, 
the ambitious scenario in Gadepalli et al. (2023), which assumed a 53% fossil fuel 
generation mix by 2030, had the lowest carbon intensity, at 523 g CO2e/kWh.

There was wide variation in energy consumption values for BEVs, especially in the 
SUV segment. Das (2022) used a value of 27.78 kWh/100 km for BEV SUVs, which was 
much higher than other values in the dataset. This high value was linked to the Hyundai 
Kona EV. Agarwal (2023) modelled the same vehicle as a representative BEV but 
reported a much lower energy consumption value of 12.85 kWh/100 km. 

Bieker (2021) applied an adjustment factor of 1.34 to MIDC test energy consumption 
values for BEVs. This factor accounted for 15% charging losses. No other study 
considered charging losses when estimating BEV energy consumption. Abdul-Manan 
et al. (2022) used a real-world adjustment factor of 1.46 for BEVs, which included 
a 40% correction from test-cycle energy consumption values and an additional 6% 
adjustment for Indian ambient temperatures. For ICEVs, the average real-world 
adjustment factor across all studies was 1.24, while for HEVs, it was 1.27. The highest 
assumed real-world adjustment factor was 1.34 for ICEVs (Agarwal, 2023; Bieker, 2021). 
Bieker (2021) assumed the highest factor for HEVs at 1.50.

These findings suggest that LCAs are likely to yield distorted results when they do not 
account for the evolving electricity grid mix, use unrepresentative vehicle models, or 
rely on unrealistic energy consumption values. Studies that report unusually high BEV 
emissions may fail to reflect the projected decarbonization of India’s grid or assume 
unreasonably high real-world energy consumption values. Conversely, studies that 
underestimate ICEV and HEV emissions may rely on overly optimistic test-cycle values 
or neglect upstream emissions from conventional fuel production. Future LCAs can 
address these inconsistencies to ensure more representative results.

Beyond methodological implications, these findings translate into several policy 
considerations. First, given that grid carbon intensity is a primary driver of the life-
cycle emissions of BEVS, the Government of India could consider continued grid 
decarbonization efforts in parallel to scaling up BEV sales. Abhyankar et al. (2023) 
projected that India’s least-cost pathway to meeting incremental energy demand by 
2030 consists primarily of 465 GW of renewable energy capacity and 60–63 GW of 
battery storage. Aligning electrification strategies with this trajectory can maximize the 
GHG reduction benefits of BEVs. 

Second, the importance of test-cycle energy consumption for life-cycle emissions 
estimates underscores the need for stringent fuel efficiency policies. Strengthening 
corporate average fuel consumption standards and introducing fiscal measures such 
as emissions-linked taxation can incentivize vehicle manufacturers to improve vehicle 
efficiency and steer consumer demand toward lower- and zero-emission vehicles. 
These policies could also incorporate flexibility mechanisms to support cost-effective 
technology transitions while deterring non-compliance.



31 ICCT WORKING PAPER  |  REVIEW OF GREENHOUSE GAS LIFE-CYCLE ASSESSMENTS OF PASSENGER CARS IN INDIA

Third, the significant influence of real-world adjustment factors on emission estimates 
highlights a need for better data collection on real-world fuel and energy consumption 
across all powertrains. One approach would be to require on-board fuel and energy 
consumption meters (OBFCMs), as mandated in the European Union since 2021.12 India 
could consider a similar mandate, ensuring real-world consumption data is collected 
through vehicle on-board data ports, telemetry, and periodic technical inspections. 
This data can enhance transparency, refine future LCAs, and inform evidence-based 
policy design.

Lastly, findings from this study suggest that WTT emissions from biofuels, particularly 
first-generation ethanol, can significantly exceed those of conventional fuels due to 
ILUC effects. Given India’s accelerated ethanol blending target (E20 by 2025) and 
potential flex-fuel pathways, a careful assessment of feedstock strategies will be critical 
to identifying sustainable, cost-efficient solutions. Similarly, methane slip emissions 
from CNG vehicles, which have been found to be significantly higher in some regions, 
warrant India-specific real-world data collection and analysis.

By identifying the key variables shaping LCA outcomes, this study lays the groundwork 
for developing a consensus LCA for BEVs, HEVs, and ICEVs in India. Such an analysis 
could help inform the design of fuel consumption standards, OBFCM requirements, 
zero-emission vehicle sales regulations, and fiscal policies like incentives and taxes to 
drive the adoption of cleaner vehicle technologies.

12 Although BEVs are currently exempt from EU OBFCM requirements, they will be included from the 
introduction of Euro 7 regulations, due in late 2026. For BEVs, it is particularly important to identify the 
extent of energy losses attributed to on-board charging systems and determine whether these losses are 
accounted for in real-world consumption data.
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APPENDIX A. EMISSION CALCULATIONS
The full life-cycle emissions associated with a given vehicle powertrain and fuel 
combination are assessed through several distinct phases within the system boundary. 

Well-to-wheel emissions encompass the emissions associated with the propulsion 
energy pathways from fuel or electricity production to their use in a vehicle. They 
include well-to-tank (WTT) emissions associated with the extraction, production, 
and transportation of fuel or electricity to the point where it is ready for use, as well 
as tank-to-wheel (TTW) emissions produced during the use of the vehicle due to the 
consumption of energy. 

Cradle-to-grave emissions cover the entire life-cycle of the vehicle, from production 
to end-of-life. These include emissions from raw material extraction, manufacturing 
of vehicle components, vehicle assembly, and transport to the point of delivery to the 
end-user. They also include end-of-life phase emissions in the form of recycling and 
material recovery, which reduce the need for new raw materials and lower the vehicle’s 
overall emissions footprint.

WTT emissions
The WTT emissions associated with fuel consumption of ICEV and HEV models from all 
studies were calibrated against the following estimation method:

WTT emissions (g CO2e/km) = Carbon intensity of fuel production (g CO2e/MJ) * 
Fuel lower heating value (MJ/l) * Fuel consumption rate (L/100 km) * Real-world 
adjustment factor / 100

The lower heating value is a property of the fuel and denotes the amount of energy 
that is released when a fuel is combusted and water vapor is emitted. The carbon 
intensity of fuel production refers to emissions associated with the extraction, 
production, and transportation and distribution of the fuel, including any fuel leakages. 
Fuel consumption rates denote test-cycle values of fuel consumption, which were 
adjusted using a real-world adjustment factor.

In the case of a multi-fuel blend, we considered the volumetric averages of carbon 
intensity of all fuels in the blend. Further, the WTT emissions also included additional 
ILUC emissions associated with the quantities of biofuels consumed. For BEVs, WTT 
emissions comprise the emissions associated with the generation, transmission, and 
distribution of electricity to the point of charge. Electricity consumption rates were 
based on test-cycle values adjusted for a real-world factor and include any assumed 
charging losses.

TTW EMISSIONS
The TTW emissions associated with fuel consumption in ICEV and HEV models from all 
studies were calibrated against the following estimation method:

TTW emissions (g CO2e/km) = Carbon intensity of fuel combustion (g CO2e/MJ) * 
Fuel lower heating value (MJ/l) * Fuel consumption rate (L/100 km) * Real-world 
adjustment factor / 100 + Methane slip emission factor (g CO2e/km) * Lifetime 
distance traveled (km)

Most studies applied a real-world adjustment to test values of fuel consumption rates, 
though the values differed across studies. Additionally, only two studies (Bieker, 2021; 
Agarwal, 2023) considered scenarios for biofuel blending with conventional fuel, 
although neither study accounted for any increase in fuel consumption as a result of 
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fuel blending. For context, researchers have estimated that volumetric fuel efficiency 
of ICEVs (in km/L) can fall by 3% when gasoline is blended with 10% ethanol (U.S. 
Energy Information Administration, n.d.), 6% when it is blended with 20% ethanol 
(Kumar, 2023), and 10% when it is blended with 30% ethanol (Enviraj Consulting, n.d.) 
due to the lower heating value of those ethanol blends. Additionally, wherever biofuel 
blending was considered in the sample, we assumed an offset of zero emissions on 
account of biogenic sources in the TTW emissions against the volume of conventional 
fuel displaced.

For CNG vehicles, TTW emissions also include GHG emissions from methane slip. Only 
two studies included CNG-powered vehicles in their analysis (Bieker, 2021; Nadola 
et al., 2023), and only Bieker (2021) reported methane slip emissions in addition to 
emissions from CNG combustion. For BEVs, TTW emissions were considered to be zero 
as BEVs have zero emissions at the tailpipe. 

CRADLE-TO-GRAVE EMISSIONS
The cradle-to-grave emissions associated with production of the vehicle and battery 
were calibrated against the following estimation method:  

Cradle to grave emissions = Emissions from vehicle production + End-of-life 
vehicle recycling credits + Maintenance emissions from parts and fluids 
replacements.

Most studies reported emissions from vehicle production for the whole vehicle, 
including the battery as applicable, as follows:

Vehicle manufacturing emissions = Vehicle manufacturing emission factor (kg 
CO2e/kg kg) * Kerb weight (kg) + End-of-life recycling credits

Where battery production emissions were reported separately, as in Bieker (2021), 
or where an additional kWh-based emission factor for battery production was also 
reported, emissions specifically resulting from battery production were estimated 
separately as follows:

Battery manufacturing emissions = Battery replacement multiplier * Battery 
manufacturing emission factor (kg CO2e/kWh) * Battery capacity (kWh) + End-of-
life recycling credits

Three studies (Gadepalli et al., 2023; Abdul-Manan et al., 2022; Agarwal, 2023) 
accounted for a replacement of the BEV battery during the vehicle lifetime. Only Bieker 
(2021) and Agarwal (2023) considered emissions associated with vehicle maintenance 
or replacement of key parts and consumables like lubricants, coolants, and tires, as 
follows: 

Maintenance emissions = Maintenance emission factor (g CO2e/km) * Vehicle 
lifetime (km)
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APPENDIX B. FULL STATISTICAL ANALYSIS RESULTS
This appendix summarizes the results of other statistical tests applied in this study. 
The results of the random forest method, which were judged to be most robust, are 
summarized in the main body. 

The other tests comprised a correlation analysis, linear regression coefficient analysis, 
and perturbation analysis. A correlation analysis measures the strength and direction 
of linear relationships between variables, and is usually useful in early exploratory 
analysis and when linear relationships are expected. A linear regression quantitively 
evaluates the relationship between dependent and independent variables, and is most 
appropriate when relationships are predominantly linear and features are relatively 
independent. A perturbation analysis is usually used to understand model sensitivity to 
input changes. 

The results of these tests are shown in Figures B1 through B6. Some methods yielded 
importance trends similar to those found using the random forest method, while 
others showed a different direction. For example, when using all inputs, the results 
of the correlation analysis resembled those of the random forest, with the electricity 
generation emissions variable, test-cycle energy consumption variable, and real-world 
energy consumption adjustment factor variable showing the strongest correlation 
with WTW emissions. Using the linear coefficient method, the electricity generation 
emissions variable, WTT emissions of conventional fuel variable, and battery capacity 
variable had the largest coefficients. For the perturbation analysis, kerb weight 
showed the third-largest impact on prediction accuracy, behind electricity generation 
emissions and test-cycle energy consumption. 

When limiting the analysis to ICEVs and HEVs, the four methods all identified test-cycle 
energy consumption as a significant factor. In addition, the linear regression and 
correlation analysis ranked the TTW emissions of conventional fuels in the top three 
most important variables, while the random forest method ranked it fourth. 

 These differences show that importance values are specific to the particular dataset 
and modelling task and may not be generalizable to other contexts. Additionally, the 
importance metric does not necessarily imply causation, as there may be complex 
interactions and confounding factors that influence the predictive power of each 
feature.
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RESULTS OF CORRELATION COEFFICIENT, LINEAR REGRESSION, 
AND PERTURBATION ANALYSES WITH ALL INPUTS
Figure B1 
Correlation analysis results with all inputs
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Figure B
Linear regression analysis results with all inputs
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Figure B3 
Perturbation analysis results with all inputs
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RESULTS OF CORRELATION COEFFICIENT, LINEAR 
REGRESSION, AND PERTURBATION ANALYSES WITH ALL 
INPUTS EXCLUDING BEVS
Figure B4 
Correlation analysis results with  inputs excluding BEVs
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Figure B5 
Linear regression analysis results with inputs excluding BEVs
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Figure B6 
Perturbation analysis results with inputs excluding BEVs
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